123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- /*
- * Copyright 2013 The LibYuv Project Authors. All rights reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
- #include "../util/ssim.h" // NOLINT
- #include <string.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- typedef unsigned int uint32_t; // NOLINT
- typedef unsigned short uint16_t; // NOLINT
- #if !defined(LIBYUV_DISABLE_X86) && !defined(__SSE2__) && \
- (defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)))
- #define __SSE2__
- #endif
- #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__)
- #include <emmintrin.h>
- #endif
- #ifdef _OPENMP
- #include <omp.h>
- #endif
- // SSIM
- enum { KERNEL = 3, KERNEL_SIZE = 2 * KERNEL + 1 };
- // Symmetric Gaussian kernel: K[i] = ~11 * exp(-0.3 * i * i)
- // The maximum value (11 x 11) must be less than 128 to avoid sign
- // problems during the calls to _mm_mullo_epi16().
- static const int K[KERNEL_SIZE] = {
- 1, 3, 7, 11, 7, 3, 1 // ~11 * exp(-0.3 * i * i)
- };
- static const double kiW[KERNEL + 1 + 1] = {
- 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j]
- 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j]
- 1. / 1056., // 1 / sum(i:0..5, j..6) K[i]*K[j]
- 1. / 957., // 1 / sum(i:0..4, j..6) K[i]*K[j]
- 1. / 726., // 1 / sum(i:0..3, j..6) K[i]*K[j]
- };
- #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__)
- #define PWEIGHT(A, B) static_cast<uint16_t>(K[(A)] * K[(B)]) // weight product
- #define MAKE_WEIGHT(L) \
- { \
- { \
- { \
- PWEIGHT(L, 0) \
- , PWEIGHT(L, 1), PWEIGHT(L, 2), PWEIGHT(L, 3), PWEIGHT(L, 4), \
- PWEIGHT(L, 5), PWEIGHT(L, 6), 0 \
- } \
- } \
- }
- // We need this union trick to be able to initialize constant static __m128i
- // values. We can't call _mm_set_epi16() for static compile-time initialization.
- static const struct {
- union {
- uint16_t i16_[8];
- __m128i m_;
- } values_;
- } W0 = MAKE_WEIGHT(0), W1 = MAKE_WEIGHT(1), W2 = MAKE_WEIGHT(2),
- W3 = MAKE_WEIGHT(3);
- // ... the rest is symmetric.
- #undef MAKE_WEIGHT
- #undef PWEIGHT
- #endif
- // Common final expression for SSIM, once the weighted sums are known.
- static double FinalizeSSIM(double iw,
- double xm,
- double ym,
- double xxm,
- double xym,
- double yym) {
- const double iwx = xm * iw;
- const double iwy = ym * iw;
- double sxx = xxm * iw - iwx * iwx;
- double syy = yym * iw - iwy * iwy;
- // small errors are possible, due to rounding. Clamp to zero.
- if (sxx < 0.) {
- sxx = 0.;
- }
- if (syy < 0.) {
- syy = 0.;
- }
- const double sxsy = sqrt(sxx * syy);
- const double sxy = xym * iw - iwx * iwy;
- static const double C11 = (0.01 * 0.01) * (255 * 255);
- static const double C22 = (0.03 * 0.03) * (255 * 255);
- static const double C33 = (0.015 * 0.015) * (255 * 255);
- const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11);
- const double c = (2. * sxsy + C22) / (sxx + syy + C22);
- const double s = (sxy + C33) / (sxsy + C33);
- return l * c * s;
- }
- // GetSSIM() does clipping. GetSSIMFullKernel() does not
- // TODO(skal): use summed tables?
- // Note: worst case of accumulation is a weight of 33 = 11 + 2 * (7 + 3 + 1)
- // with a diff of 255, squared. The maximum error is thus 0x4388241,
- // which fits into 32 bits integers.
- double GetSSIM(const uint8_t* org,
- const uint8_t* rec,
- int xo,
- int yo,
- int W,
- int H,
- int stride) {
- uint32_t ws = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0;
- org += (yo - KERNEL) * stride;
- org += (xo - KERNEL);
- rec += (yo - KERNEL) * stride;
- rec += (xo - KERNEL);
- for (int y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride, rec += stride) {
- if (((yo - KERNEL + y_) < 0) || ((yo - KERNEL + y_) >= H)) {
- continue;
- }
- const int Wy = K[y_];
- for (int x_ = 0; x_ < KERNEL_SIZE; ++x_) {
- const int Wxy = Wy * K[x_];
- if (((xo - KERNEL + x_) >= 0) && ((xo - KERNEL + x_) < W)) {
- const int org_x = org[x_];
- const int rec_x = rec[x_];
- ws += Wxy;
- xm += Wxy * org_x;
- ym += Wxy * rec_x;
- xxm += Wxy * org_x * org_x;
- xym += Wxy * org_x * rec_x;
- yym += Wxy * rec_x * rec_x;
- }
- }
- }
- return FinalizeSSIM(1. / ws, xm, ym, xxm, xym, yym);
- }
- double GetSSIMFullKernel(const uint8_t* org,
- const uint8_t* rec,
- int xo,
- int yo,
- int stride,
- double area_weight) {
- uint32_t xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0;
- #if defined(LIBYUV_DISABLE_X86) || !defined(__SSE2__)
- org += yo * stride + xo;
- rec += yo * stride + xo;
- for (int y = 1; y <= KERNEL; y++) {
- const int dy1 = y * stride;
- const int dy2 = y * stride;
- const int Wy = K[KERNEL + y];
- for (int x = 1; x <= KERNEL; x++) {
- // Compute the contributions of upper-left (ul), upper-right (ur)
- // lower-left (ll) and lower-right (lr) points (see the diagram below).
- // Symmetric Kernel will have same weight on those points.
- // - - - - - - -
- // - ul - - - ur -
- // - - - - - - -
- // - - - 0 - - -
- // - - - - - - -
- // - ll - - - lr -
- // - - - - - - -
- const int Wxy = Wy * K[KERNEL + x];
- const int ul1 = org[-dy1 - x];
- const int ur1 = org[-dy1 + x];
- const int ll1 = org[dy1 - x];
- const int lr1 = org[dy1 + x];
- const int ul2 = rec[-dy2 - x];
- const int ur2 = rec[-dy2 + x];
- const int ll2 = rec[dy2 - x];
- const int lr2 = rec[dy2 + x];
- xm += Wxy * (ul1 + ur1 + ll1 + lr1);
- ym += Wxy * (ul2 + ur2 + ll2 + lr2);
- xxm += Wxy * (ul1 * ul1 + ur1 * ur1 + ll1 * ll1 + lr1 * lr1);
- xym += Wxy * (ul1 * ul2 + ur1 * ur2 + ll1 * ll2 + lr1 * lr2);
- yym += Wxy * (ul2 * ul2 + ur2 * ur2 + ll2 * ll2 + lr2 * lr2);
- }
- // Compute the contributions of up (u), down (d), left (l) and right (r)
- // points across the main axes (see the diagram below).
- // Symmetric Kernel will have same weight on those points.
- // - - - - - - -
- // - - - u - - -
- // - - - - - - -
- // - l - 0 - r -
- // - - - - - - -
- // - - - d - - -
- // - - - - - - -
- const int Wxy = Wy * K[KERNEL];
- const int u1 = org[-dy1];
- const int d1 = org[dy1];
- const int l1 = org[-y];
- const int r1 = org[y];
- const int u2 = rec[-dy2];
- const int d2 = rec[dy2];
- const int l2 = rec[-y];
- const int r2 = rec[y];
- xm += Wxy * (u1 + d1 + l1 + r1);
- ym += Wxy * (u2 + d2 + l2 + r2);
- xxm += Wxy * (u1 * u1 + d1 * d1 + l1 * l1 + r1 * r1);
- xym += Wxy * (u1 * u2 + d1 * d2 + l1 * l2 + r1 * r2);
- yym += Wxy * (u2 * u2 + d2 * d2 + l2 * l2 + r2 * r2);
- }
- // Lastly the contribution of (x0, y0) point.
- const int Wxy = K[KERNEL] * K[KERNEL];
- const int s1 = org[0];
- const int s2 = rec[0];
- xm += Wxy * s1;
- ym += Wxy * s2;
- xxm += Wxy * s1 * s1;
- xym += Wxy * s1 * s2;
- yym += Wxy * s2 * s2;
- #else // __SSE2__
- org += (yo - KERNEL) * stride + (xo - KERNEL);
- rec += (yo - KERNEL) * stride + (xo - KERNEL);
- const __m128i zero = _mm_setzero_si128();
- __m128i x = zero;
- __m128i y = zero;
- __m128i xx = zero;
- __m128i xy = zero;
- __m128i yy = zero;
- // Read 8 pixels at line #L, and convert to 16bit, perform weighting
- // and acccumulate.
- #define LOAD_LINE_PAIR(L, WEIGHT) \
- do { \
- const __m128i v0 = \
- _mm_loadl_epi64(reinterpret_cast<const __m128i*>(org + (L)*stride)); \
- const __m128i v1 = \
- _mm_loadl_epi64(reinterpret_cast<const __m128i*>(rec + (L)*stride)); \
- const __m128i w0 = _mm_unpacklo_epi8(v0, zero); \
- const __m128i w1 = _mm_unpacklo_epi8(v1, zero); \
- const __m128i ww0 = _mm_mullo_epi16(w0, (WEIGHT).values_.m_); \
- const __m128i ww1 = _mm_mullo_epi16(w1, (WEIGHT).values_.m_); \
- x = _mm_add_epi32(x, _mm_unpacklo_epi16(ww0, zero)); \
- y = _mm_add_epi32(y, _mm_unpacklo_epi16(ww1, zero)); \
- x = _mm_add_epi32(x, _mm_unpackhi_epi16(ww0, zero)); \
- y = _mm_add_epi32(y, _mm_unpackhi_epi16(ww1, zero)); \
- xx = _mm_add_epi32(xx, _mm_madd_epi16(ww0, w0)); \
- xy = _mm_add_epi32(xy, _mm_madd_epi16(ww0, w1)); \
- yy = _mm_add_epi32(yy, _mm_madd_epi16(ww1, w1)); \
- } while (0)
- #define ADD_AND_STORE_FOUR_EPI32(M, OUT) \
- do { \
- uint32_t tmp[4]; \
- _mm_storeu_si128(reinterpret_cast<__m128i*>(tmp), (M)); \
- (OUT) = tmp[3] + tmp[2] + tmp[1] + tmp[0]; \
- } while (0)
- LOAD_LINE_PAIR(0, W0);
- LOAD_LINE_PAIR(1, W1);
- LOAD_LINE_PAIR(2, W2);
- LOAD_LINE_PAIR(3, W3);
- LOAD_LINE_PAIR(4, W2);
- LOAD_LINE_PAIR(5, W1);
- LOAD_LINE_PAIR(6, W0);
- ADD_AND_STORE_FOUR_EPI32(x, xm);
- ADD_AND_STORE_FOUR_EPI32(y, ym);
- ADD_AND_STORE_FOUR_EPI32(xx, xxm);
- ADD_AND_STORE_FOUR_EPI32(xy, xym);
- ADD_AND_STORE_FOUR_EPI32(yy, yym);
- #undef LOAD_LINE_PAIR
- #undef ADD_AND_STORE_FOUR_EPI32
- #endif
- return FinalizeSSIM(area_weight, xm, ym, xxm, xym, yym);
- }
- static int start_max(int x, int y) {
- return (x > y) ? x : y;
- }
- double CalcSSIM(const uint8_t* org,
- const uint8_t* rec,
- const int image_width,
- const int image_height) {
- double SSIM = 0.;
- const int KERNEL_Y = (image_height < KERNEL) ? image_height : KERNEL;
- const int KERNEL_X = (image_width < KERNEL) ? image_width : KERNEL;
- const int start_x = start_max(image_width - 8 + KERNEL_X, KERNEL_X);
- const int start_y = start_max(image_height - KERNEL_Y, KERNEL_Y);
- const int stride = image_width;
- for (int j = 0; j < KERNEL_Y; ++j) {
- for (int i = 0; i < image_width; ++i) {
- SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride);
- }
- }
- #ifdef _OPENMP
- #pragma omp parallel for reduction(+ : SSIM)
- #endif
- for (int j = KERNEL_Y; j < image_height - KERNEL_Y; ++j) {
- for (int i = 0; i < KERNEL_X; ++i) {
- SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride);
- }
- for (int i = KERNEL_X; i < start_x; ++i) {
- SSIM += GetSSIMFullKernel(org, rec, i, j, stride, kiW[0]);
- }
- if (start_x < image_width) {
- // GetSSIMFullKernel() needs to be able to read 8 pixels (in SSE2). So we
- // copy the 8 rightmost pixels on a cache area, and pad this area with
- // zeros which won't contribute to the overall SSIM value (but we need
- // to pass the correct normalizing constant!). By using this cache, we can
- // still call GetSSIMFullKernel() instead of the slower GetSSIM().
- // NOTE: we could use similar method for the left-most pixels too.
- const int kScratchWidth = 8;
- const int kScratchStride = kScratchWidth + KERNEL + 1;
- uint8_t scratch_org[KERNEL_SIZE * kScratchStride] = {0};
- uint8_t scratch_rec[KERNEL_SIZE * kScratchStride] = {0};
- for (int k = 0; k < KERNEL_SIZE; ++k) {
- const int offset =
- (j - KERNEL + k) * stride + image_width - kScratchWidth;
- memcpy(scratch_org + k * kScratchStride, org + offset, kScratchWidth);
- memcpy(scratch_rec + k * kScratchStride, rec + offset, kScratchWidth);
- }
- for (int k = 0; k <= KERNEL_X + 1; ++k) {
- SSIM += GetSSIMFullKernel(scratch_org, scratch_rec, KERNEL + k, KERNEL,
- kScratchStride, kiW[k]);
- }
- }
- }
- for (int j = start_y; j < image_height; ++j) {
- for (int i = 0; i < image_width; ++i) {
- SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride);
- }
- }
- return SSIM;
- }
- double CalcLSSIM(double ssim) {
- return -10.0 * log10(1.0 - ssim);
- }
- #ifdef __cplusplus
- } // extern "C"
- #endif
|