123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- ;
- ; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2)
- ;
- ; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
- ; Copyright (C) 2015, Matthieu Darbois.
- ;
- ; Based on the x86 SIMD extension for IJG JPEG library
- ; Copyright (C) 1999-2006, MIYASAKA Masaru.
- ; For conditions of distribution and use, see copyright notice in jsimdext.inc
- ;
- ; This file should be assembled with NASM (Netwide Assembler),
- ; can *not* be assembled with Microsoft's MASM or any compatible
- ; assembler (including Borland's Turbo Assembler).
- ; NASM is available from http://nasm.sourceforge.net/ or
- ; http://sourceforge.net/project/showfiles.php?group_id=6208
- ;
- ; This file contains an SSE2 implementation for Huffman coding of one block.
- ; The following code is based directly on jchuff.c; see jchuff.c for more
- ; details.
- %include "jsimdext.inc"
- ; --------------------------------------------------------------------------
- SECTION SEG_CONST
- alignz 32
- GLOBAL_DATA(jconst_huff_encode_one_block)
- EXTN(jconst_huff_encode_one_block):
- %include "jpeg_nbits_table.inc"
- alignz 32
- ; --------------------------------------------------------------------------
- SECTION SEG_TEXT
- BITS 64
- ; These macros perform the same task as the emit_bits() function in the
- ; original libjpeg code. In addition to reducing overhead by explicitly
- ; inlining the code, additional performance is achieved by taking into
- ; account the size of the bit buffer and waiting until it is almost full
- ; before emptying it. This mostly benefits 64-bit platforms, since 6
- ; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
- %macro EMIT_BYTE 0
- sub put_bits, 8 ; put_bits -= 8;
- mov rdx, put_buffer
- mov ecx, put_bits
- shr rdx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
- mov byte [buffer], dl ; *buffer++ = c;
- add buffer, 1
- cmp dl, 0xFF ; need to stuff a zero byte?
- jne %%.EMIT_BYTE_END
- mov byte [buffer], 0 ; *buffer++ = 0;
- add buffer, 1
- %%.EMIT_BYTE_END:
- %endmacro
- %macro PUT_BITS 1
- add put_bits, ecx ; put_bits += size;
- shl put_buffer, cl ; put_buffer = (put_buffer << size);
- or put_buffer, %1
- %endmacro
- %macro CHECKBUF31 0
- cmp put_bits, 32 ; if (put_bits > 31) {
- jl %%.CHECKBUF31_END
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- %%.CHECKBUF31_END:
- %endmacro
- %macro CHECKBUF47 0
- cmp put_bits, 48 ; if (put_bits > 47) {
- jl %%.CHECKBUF47_END
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- EMIT_BYTE
- %%.CHECKBUF47_END:
- %endmacro
- %macro EMIT_BITS 2
- CHECKBUF47
- mov ecx, %2
- PUT_BITS %1
- %endmacro
- %macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
- pxor xmm8, xmm8 ; __m128i neg = _mm_setzero_si128();
- pxor xmm9, xmm9 ; __m128i neg = _mm_setzero_si128();
- pxor xmm10, xmm10 ; __m128i neg = _mm_setzero_si128();
- pxor xmm11, xmm11 ; __m128i neg = _mm_setzero_si128();
- pinsrw %34, word [r12 + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
- pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
- pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
- pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
- pinsrw %34, word [r12 + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
- pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
- pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
- pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
- pinsrw %34, word [r12 + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
- pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
- pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
- pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
- pinsrw %34, word [r12 + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
- pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
- pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
- pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
- pinsrw %34, word [r12 + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
- pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
- pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
- pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
- pinsrw %34, word [r12 + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
- pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
- pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
- pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
- pinsrw %34, word [r12 + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
- pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
- pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
- pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
- pinsrw %34, word [r12 + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
- pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
- pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
- %if %1 != 32
- pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
- %else
- pinsrw %37, ebx, 7 ; xmm_shadow[31] = block[jno31];
- %endif
- pcmpgtw xmm8, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
- pcmpgtw xmm9, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
- pcmpgtw xmm10, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
- pcmpgtw xmm11, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
- paddw %34, xmm8 ; x1 = _mm_add_epi16(x1, neg);
- paddw %35, xmm9 ; x1 = _mm_add_epi16(x1, neg);
- paddw %36, xmm10 ; x1 = _mm_add_epi16(x1, neg);
- paddw %37, xmm11 ; x1 = _mm_add_epi16(x1, neg);
- pxor %34, xmm8 ; x1 = _mm_xor_si128(x1, neg);
- pxor %35, xmm9 ; x1 = _mm_xor_si128(x1, neg);
- pxor %36, xmm10 ; x1 = _mm_xor_si128(x1, neg);
- pxor %37, xmm11 ; x1 = _mm_xor_si128(x1, neg);
- pxor xmm8, %34 ; neg = _mm_xor_si128(neg, x1);
- pxor xmm9, %35 ; neg = _mm_xor_si128(neg, x1);
- pxor xmm10, %36 ; neg = _mm_xor_si128(neg, x1);
- pxor xmm11, %37 ; neg = _mm_xor_si128(neg, x1);
- movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
- movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
- movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
- movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
- movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
- movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
- movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
- movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
- %endmacro
- ;
- ; Encode a single block's worth of coefficients.
- ;
- ; GLOBAL(JOCTET *)
- ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
- ; JCOEFPTR block, int last_dc_val,
- ; c_derived_tbl *dctbl, c_derived_tbl *actbl)
- ;
- ; r10 = working_state *state
- ; r11 = JOCTET *buffer
- ; r12 = JCOEFPTR block
- ; r13d = int last_dc_val
- ; r14 = c_derived_tbl *dctbl
- ; r15 = c_derived_tbl *actbl
- %define t1 rbp - (DCTSIZE2 * SIZEOF_WORD)
- %define t2 t1 - (DCTSIZE2 * SIZEOF_WORD)
- %define put_buffer r8
- %define put_bits r9d
- %define buffer rax
- align 32
- GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
- EXTN(jsimd_huff_encode_one_block_sse2):
- push rbp
- mov rax, rsp ; rax = original rbp
- sub rsp, byte 4
- and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
- mov [rsp], rax
- mov rbp, rsp ; rbp = aligned rbp
- lea rsp, [t2]
- push_xmm 4
- collect_args 6
- push rbx
- mov buffer, r11 ; r11 is now sratch
- mov put_buffer, MMWORD [r10+16] ; put_buffer = state->cur.put_buffer;
- mov put_bits, dword [r10+24] ; put_bits = state->cur.put_bits;
- push r10 ; r10 is now scratch
- ; Encode the DC coefficient difference per section F.1.2.1
- movsx edi, word [r12] ; temp = temp2 = block[0] - last_dc_val;
- sub edi, r13d ; r13 is not used anymore
- mov ebx, edi
- ; This is a well-known technique for obtaining the absolute value
- ; without a branch. It is derived from an assembly language technique
- ; presented in "How to Optimize for the Pentium Processors",
- ; Copyright (c) 1996, 1997 by Agner Fog.
- mov esi, edi
- sar esi, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
- xor edi, esi ; temp ^= temp3;
- sub edi, esi ; temp -= temp3;
- ; For a negative input, want temp2 = bitwise complement of abs(input)
- ; This code assumes we are on a two's complement machine
- add ebx, esi ; temp2 += temp3;
- ; Find the number of bits needed for the magnitude of the coefficient
- lea r11, [rel jpeg_nbits_table]
- movzx rdi, byte [r11 + rdi] ; nbits = JPEG_NBITS(temp);
- ; Emit the Huffman-coded symbol for the number of bits
- mov r11d, INT [r14 + rdi * 4] ; code = dctbl->ehufco[nbits];
- movzx esi, byte [r14 + rdi + 1024] ; size = dctbl->ehufsi[nbits];
- EMIT_BITS r11, esi ; EMIT_BITS(code, size)
- ; Mask off any extra bits in code
- mov esi, 1
- mov ecx, edi
- shl esi, cl
- dec esi
- and ebx, esi ; temp2 &= (((JLONG)1)<<nbits) - 1;
- ; Emit that number of bits of the value, if positive,
- ; or the complement of its magnitude, if negative.
- EMIT_BITS rbx, edi ; EMIT_BITS(temp2, nbits)
- ; Prepare data
- xor ebx, ebx
- kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
- 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
- 27, 20, 13, 6, 7, 14, 21, 28, 35, \
- xmm0, xmm1, xmm2, xmm3
- kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
- 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
- 53, 60, 61, 54, 47, 55, 62, 63, 63, \
- xmm4, xmm5, xmm6, xmm7
- pxor xmm8, xmm8
- pcmpeqw xmm0, xmm8 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
- pcmpeqw xmm1, xmm8 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
- pcmpeqw xmm2, xmm8 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
- pcmpeqw xmm3, xmm8 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
- pcmpeqw xmm4, xmm8 ; tmp4 = _mm_cmpeq_epi16(tmp4, zero);
- pcmpeqw xmm5, xmm8 ; tmp5 = _mm_cmpeq_epi16(tmp5, zero);
- pcmpeqw xmm6, xmm8 ; tmp6 = _mm_cmpeq_epi16(tmp6, zero);
- pcmpeqw xmm7, xmm8 ; tmp7 = _mm_cmpeq_epi16(tmp7, zero);
- packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
- packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
- packsswb xmm4, xmm5 ; tmp4 = _mm_packs_epi16(tmp4, tmp5);
- packsswb xmm6, xmm7 ; tmp6 = _mm_packs_epi16(tmp6, tmp7);
- pmovmskb r11d, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
- pmovmskb r12d, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
- pmovmskb r13d, xmm4 ; index = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32;
- pmovmskb r14d, xmm6 ; index = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48;
- shl r12, 16
- shl r14, 16
- or r11, r12
- or r13, r14
- shl r13, 32
- or r11, r13
- not r11 ; index = ~index;
- ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11
- ;jmp .EFN
- mov r13d, INT [r15 + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
- movzx r14d, byte [r15 + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
- lea rsi, [t1]
- .BLOOP:
- bsf r12, r11 ; r = __builtin_ctzl(index);
- jz .ELOOP
- mov rcx, r12
- lea rsi, [rsi+r12*2] ; k += r;
- shr r11, cl ; index >>= r;
- movzx rdi, word [rsi] ; temp = t1[k];
- lea rbx, [rel jpeg_nbits_table]
- movzx rdi, byte [rbx + rdi] ; nbits = JPEG_NBITS(temp);
- .BRLOOP:
- cmp r12, 16 ; while (r > 15) {
- jl .ERLOOP
- EMIT_BITS r13, r14d ; EMIT_BITS(code_0xf0, size_0xf0)
- sub r12, 16 ; r -= 16;
- jmp .BRLOOP
- .ERLOOP:
- ; Emit Huffman symbol for run length / number of bits
- CHECKBUF31 ; uses rcx, rdx
- shl r12, 4 ; temp3 = (r << 4) + nbits;
- add r12, rdi
- mov ebx, INT [r15 + r12 * 4] ; code = actbl->ehufco[temp3];
- movzx ecx, byte [r15 + r12 + 1024] ; size = actbl->ehufsi[temp3];
- PUT_BITS rbx
- ;EMIT_CODE(code, size)
- movsx ebx, word [rsi-DCTSIZE2*2] ; temp2 = t2[k];
- ; Mask off any extra bits in code
- mov rcx, rdi
- mov rdx, 1
- shl rdx, cl
- dec rdx
- and rbx, rdx ; temp2 &= (((JLONG)1)<<nbits) - 1;
- PUT_BITS rbx ; PUT_BITS(temp2, nbits)
- shr r11, 1 ; index >>= 1;
- add rsi, 2 ; ++k;
- jmp .BLOOP
- .ELOOP:
- ; If the last coef(s) were zero, emit an end-of-block code
- lea rdi, [t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
- cmp rdi, rsi ; if (r > 0) {
- je .EFN
- mov ebx, INT [r15] ; code = actbl->ehufco[0];
- movzx r12d, byte [r15 + 1024] ; size = actbl->ehufsi[0];
- EMIT_BITS rbx, r12d
- .EFN:
- pop r10
- ; Save put_buffer & put_bits
- mov MMWORD [r10+16], put_buffer ; state->cur.put_buffer = put_buffer;
- mov dword [r10+24], put_bits ; state->cur.put_bits = put_bits;
- pop rbx
- uncollect_args 6
- pop_xmm 4
- mov rsp, rbp ; rsp <- aligned rbp
- pop rsp ; rsp <- original rbp
- pop rbp
- ret
- ; For some reason, the OS X linker does not honor the request to align the
- ; segment unless we do this.
- align 32
|