123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- /*
- * jidctred.c
- *
- * This file was part of the Independent JPEG Group's software:
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * libjpeg-turbo Modifications:
- * Copyright (C) 2015, D. R. Commander.
- * For conditions of distribution and use, see the accompanying README.ijg
- * file.
- *
- * This file contains inverse-DCT routines that produce reduced-size output:
- * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
- *
- * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
- * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
- * with an 8-to-4 step that produces the four averages of two adjacent outputs
- * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
- * These steps were derived by computing the corresponding values at the end
- * of the normal LL&M code, then simplifying as much as possible.
- *
- * 1x1 is trivial: just take the DC coefficient divided by 8.
- *
- * See jidctint.c for additional comments.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef IDCT_SCALING_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
- #endif
- /* Scaling is the same as in jidctint.c. */
- #if BITS_IN_JSAMPLE == 8
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #else
- #define CONST_BITS 13
- #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
- #endif
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 13
- #define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */
- #define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */
- #define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */
- #define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */
- #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */
- #define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */
- #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */
- #define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */
- #define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */
- #define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */
- #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */
- #define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */
- #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */
- #define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */
- #else
- #define FIX_0_211164243 FIX(0.211164243)
- #define FIX_0_509795579 FIX(0.509795579)
- #define FIX_0_601344887 FIX(0.601344887)
- #define FIX_0_720959822 FIX(0.720959822)
- #define FIX_0_765366865 FIX(0.765366865)
- #define FIX_0_850430095 FIX(0.850430095)
- #define FIX_0_899976223 FIX(0.899976223)
- #define FIX_1_061594337 FIX(1.061594337)
- #define FIX_1_272758580 FIX(1.272758580)
- #define FIX_1_451774981 FIX(1.451774981)
- #define FIX_1_847759065 FIX(1.847759065)
- #define FIX_2_172734803 FIX(2.172734803)
- #define FIX_2_562915447 FIX(2.562915447)
- #define FIX_3_624509785 FIX(3.624509785)
- #endif
- /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
- #if BITS_IN_JSAMPLE == 8
- #define MULTIPLY(var, const) MULTIPLY16C16(var, const)
- #else
- #define MULTIPLY(var, const) ((var) * (const))
- #endif
- /* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result. In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
- #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval))
- /*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 4x4 output block.
- */
- GLOBAL(void)
- jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf,
- JDIMENSION output_col)
- {
- JLONG tmp0, tmp2, tmp10, tmp12;
- JLONG z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE *quantptr;
- int *wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE * 4]; /* buffers data between passes */
- SHIFT_TEMPS
- /* Pass 1: process columns from input, store into work array. */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
- /* Don't bother to process column 4, because second pass won't use it */
- if (ctr == DCTSIZE - 4)
- continue;
- if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
- inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
- inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
- /* AC terms all zero; we need not examine term 4 for 4x4 output */
- int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
- quantptr[DCTSIZE * 0]), PASS1_BITS);
- wsptr[DCTSIZE * 0] = dcval;
- wsptr[DCTSIZE * 1] = dcval;
- wsptr[DCTSIZE * 2] = dcval;
- wsptr[DCTSIZE * 3] = dcval;
- continue;
- }
- /* Even part */
- tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
- tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
- z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
- tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- /* Odd part */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
- z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
- z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
- z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
- tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
- MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
- MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
- MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
- tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
- MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
- MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
- MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
- /* Final output stage */
- wsptr[DCTSIZE * 0] =
- (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
- wsptr[DCTSIZE * 3] =
- (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
- wsptr[DCTSIZE * 1] =
- (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
- wsptr[DCTSIZE * 2] =
- (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
- }
- /* Pass 2: process 4 rows from work array, store into output array. */
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* It's not clear whether a zero row test is worthwhile here ... */
- #ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
- PASS1_BITS + 3) & RANGE_MASK];
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
- #endif
- /* Even part */
- tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
- tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) +
- MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- /* Odd part */
- z1 = (JLONG)wsptr[7];
- z2 = (JLONG)wsptr[5];
- z3 = (JLONG)wsptr[3];
- z4 = (JLONG)wsptr[1];
- tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
- MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
- MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
- MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
- tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
- MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
- MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
- MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
- /* Final output stage */
- outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
- CONST_BITS + PASS1_BITS + 3 + 1) &
- RANGE_MASK];
- outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
- CONST_BITS + PASS1_BITS + 3 + 1) &
- RANGE_MASK];
- outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
- CONST_BITS + PASS1_BITS + 3 + 1) &
- RANGE_MASK];
- outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
- CONST_BITS + PASS1_BITS + 3 + 1) &
- RANGE_MASK];
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
- }
- /*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 2x2 output block.
- */
- GLOBAL(void)
- jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf,
- JDIMENSION output_col)
- {
- JLONG tmp0, tmp10, z1;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE *quantptr;
- int *wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE * 2]; /* buffers data between passes */
- SHIFT_TEMPS
- /* Pass 1: process columns from input, store into work array. */
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
- /* Don't bother to process columns 2,4,6 */
- if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
- continue;
- if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
- inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
- /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
- int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
- quantptr[DCTSIZE * 0]), PASS1_BITS);
- wsptr[DCTSIZE * 0] = dcval;
- wsptr[DCTSIZE * 1] = dcval;
- continue;
- }
- /* Even part */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
- tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
- /* Odd part */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
- tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
- tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
- tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
- z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
- tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
- /* Final output stage */
- wsptr[DCTSIZE * 0] =
- (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
- wsptr[DCTSIZE * 1] =
- (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
- }
- /* Pass 2: process 2 rows from work array, store into output array. */
- wsptr = workspace;
- for (ctr = 0; ctr < 2; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* It's not clear whether a zero row test is worthwhile here ... */
- #ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
- PASS1_BITS + 3) & RANGE_MASK];
- outptr[0] = dcval;
- outptr[1] = dcval;
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
- #endif
- /* Even part */
- tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
- /* Odd part */
- tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
- MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
- MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
- MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
- /* Final output stage */
- outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
- CONST_BITS + PASS1_BITS + 3 + 2) &
- RANGE_MASK];
- outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
- CONST_BITS + PASS1_BITS + 3 + 2) &
- RANGE_MASK];
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
- }
- /*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 1x1 output block.
- */
- GLOBAL(void)
- jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf,
- JDIMENSION output_col)
- {
- int dcval;
- ISLOW_MULT_TYPE *quantptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
- /* We hardly need an inverse DCT routine for this: just take the
- * average pixel value, which is one-eighth of the DC coefficient.
- */
- quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
- dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
- dcval = (int)DESCALE((JLONG)dcval, 3);
- output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
- }
- #endif /* IDCT_SCALING_SUPPORTED */
|