123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- /*
- * jidctfst.c
- *
- * This file was part of the Independent JPEG Group's software:
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * libjpeg-turbo Modifications:
- * Copyright (C) 2015, D. R. Commander.
- * For conditions of distribution and use, see the accompanying README.ijg
- * file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README.ijg). The following
- * code is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_IFAST_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
- #endif
- /* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jidctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * The dequantized coefficients are not integers because the AA&N scaling
- * factors have been incorporated. We represent them scaled up by PASS1_BITS,
- * so that the first and second IDCT rounds have the same input scaling.
- * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
- * avoid a descaling shift; this compromises accuracy rather drastically
- * for small quantization table entries, but it saves a lot of shifts.
- * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
- * so we use a much larger scaling factor to preserve accuracy.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
- #if BITS_IN_JSAMPLE == 8
- #define CONST_BITS 8
- #define PASS1_BITS 2
- #else
- #define CONST_BITS 8
- #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
- #endif
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 8
- #define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */
- #define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */
- #define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */
- #define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */
- #else
- #define FIX_1_082392200 FIX(1.082392200)
- #define FIX_1_414213562 FIX(1.414213562)
- #define FIX_1_847759065 FIX(1.847759065)
- #define FIX_2_613125930 FIX(2.613125930)
- #endif
- /* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
- #ifndef USE_ACCURATE_ROUNDING
- #undef DESCALE
- #define DESCALE(x, n) RIGHT_SHIFT(x, n)
- #endif
- /* Multiply a DCTELEM variable by an JLONG constant, and immediately
- * descale to yield a DCTELEM result.
- */
- #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
- /* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
- * multiplication will do. For 12-bit data, the multiplier table is
- * declared JLONG, so a 32-bit multiply will be used.
- */
- #if BITS_IN_JSAMPLE == 8
- #define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval))
- #else
- #define DEQUANTIZE(coef, quantval) \
- DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS)
- #endif
- /* Like DESCALE, but applies to a DCTELEM and produces an int.
- * We assume that int right shift is unsigned if JLONG right shift is.
- */
- #ifdef RIGHT_SHIFT_IS_UNSIGNED
- #define ISHIFT_TEMPS DCTELEM ishift_temp;
- #if BITS_IN_JSAMPLE == 8
- #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
- #else
- #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
- #endif
- #define IRIGHT_SHIFT(x, shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \
- (ishift_temp >> (shft)))
- #else
- #define ISHIFT_TEMPS
- #define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
- #endif
- #ifdef USE_ACCURATE_ROUNDING
- #define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n))
- #else
- #define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n))
- #endif
- /*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
- GLOBAL(void)
- jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf,
- JDIMENSION output_col)
- {
- DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- DCTELEM tmp10, tmp11, tmp12, tmp13;
- DCTELEM z5, z10, z11, z12, z13;
- JCOEFPTR inptr;
- IFAST_MULT_TYPE *quantptr;
- int *wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS /* for DESCALE */
- ISHIFT_TEMPS /* for IDESCALE */
- /* Pass 1: process columns from input, store into work array. */
- inptr = coef_block;
- quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
- if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
- inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
- inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
- inptr[DCTSIZE * 7] == 0) {
- /* AC terms all zero */
- int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
- wsptr[DCTSIZE * 0] = dcval;
- wsptr[DCTSIZE * 1] = dcval;
- wsptr[DCTSIZE * 2] = dcval;
- wsptr[DCTSIZE * 3] = dcval;
- wsptr[DCTSIZE * 4] = dcval;
- wsptr[DCTSIZE * 5] = dcval;
- wsptr[DCTSIZE * 6] = dcval;
- wsptr[DCTSIZE * 7] = dcval;
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
- /* Even part */
- tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
- tmp10 = tmp0 + tmp2; /* phase 3 */
- tmp11 = tmp0 - tmp2;
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
- tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
- tmp0 = tmp10 + tmp13; /* phase 2 */
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
- /* Odd part */
- tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
- tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
- tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
- tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
- z13 = tmp6 + tmp5; /* phase 6 */
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
- wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
- wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
- wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
- wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
- wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
- wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
- wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
- wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
- #ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval =
- range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
- #endif
- /* Even part */
- tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
- tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
- tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
- tmp12 =
- MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
- /* Odd part */
- z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
- z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
- z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
- z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
- /* Final output stage: scale down by a factor of 8 and range-limit */
- outptr[0] =
- range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
- outptr[7] =
- range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
- outptr[1] =
- range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
- outptr[6] =
- range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
- outptr[2] =
- range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
- outptr[5] =
- range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
- outptr[4] =
- range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
- outptr[3] =
- range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
- }
- #endif /* DCT_IFAST_SUPPORTED */
|