설명 없음

Your Name 60c3a45288 debug 3 년 전
.github b18dd2e801 3.0.2 3 년 전
3rdparty b18dd2e801 3.0.2 3 년 전
cmake b18dd2e801 3.0.2 3 년 전
data 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 년 전
docker b18dd2e801 3.0.2 3 년 전
easydk 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 년 전
framework 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 년 전
modules 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 년 전
modules_contrib b18dd2e801 3.0.2 3 년 전
python b18dd2e801 3.0.2 3 년 전
source 0329122130 debug 3 년 전
tools 60c3a45288 debug 3 년 전
.dockerignore b18dd2e801 3.0.2 3 년 전
.gitignore b18dd2e801 3.0.2 3 년 전
.gitmodules b18dd2e801 3.0.2 3 년 전
CMakeLists.txt b18dd2e801 3.0.2 3 년 전
CPPLINT.cfg b18dd2e801 3.0.2 3 년 전
README.md b18dd2e801 3.0.2 3 년 전

README.md

Cambricon CNStream

CNStream is a streaming framework with plug-ins. It is used to connect other modules, includes basic functionalities, libraries, and essential elements.

CNStream provides the following built-in modules:

  • source: Support RTSP, video file, images and elementary stream in memory (H.264, H.265, and JPEG decoding).
  • inference: MLU-based inference accelerator for detection and classification.
  • inference2: Based on infer server to run inference, preprocessing and postprocessing.
  • osd (On-screen display): Module for highlighting objects and text overlay.
  • encode: Encode videos or images.
  • display: Display the video on screen.
  • tracker: Multi-object tracking.
  • rtsp_sink:Push RTSP stream to internet.

Getting started

To start using CNStream, please refer to the chapter of quick start in the document of Cambricon-CNStream-User-Guild-CN.pdf.

Samples

Classification Object Detection
Classification Object Detection
Object Tracking License plate recognization
Object Tracking License plate recognization
Body Pose Vehicle Detection
Body Pose Vehicle Detection

Best Practices

How to build a classic classification or detection application based on CNStream?

You should find a sample from samples/simple_run_pipeline/simple_run_pipeline.cpp that helps developers easily understand how to develop a classic classification or detection application based on CNStream pipeline.

This sample supports typical classification and detection neural networks like vgg resnet ssd fasterrcnn yolo-vx and so on.

This sample supports images or video file as input.

How to change the input video file?

Modify the files.list_video file, which is under the samples directory, to replace the video path. Each line represents one stream. It is recommended to use an absolute path or use a relative path relative to the executor path.

Documentation

Cambricon Forum Docs

Check out the Examples page for tutorials on how to use CNStream. Concepts page for basic definitions.

Community forum

Discuss - General community discussion around CNStream.