123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- /*************************************************************************
- * Copyright (C) [2019] by Cambricon, Inc. All rights reserved
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *************************************************************************/
- #ifndef MODULES_INFERENCE_INCLUDE_POSTPROC_HPP_
- #define MODULES_INFERENCE_INCLUDE_POSTPROC_HPP_
- /**
- * \file postproc.hpp
- *
- * This file contains a declaration of class Postproc
- */
- #include <memory>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #include "easyinfer/model_loader.h"
- #include "reflex_object.h"
- #include "cnstream_frame.hpp"
- #include "cnstream_frame_va.hpp"
- namespace cnstream {
- /**
- * @class Postproc
- *
- * @brief Postproc is the base class of post process.
- */
- class Postproc : virtual public ReflexObjectEx<Postproc> {
- public:
- /**
- * @brief Destructs an object.
- *
- * @return No return value.
- */
- virtual ~Postproc() = 0;
- /**
- * @brief Creates a postprocess object with the given postprocess's class name.
- *
- * @param[in] proc_name The postprocess class name.
- *
- * @return The pointer to postprocess object.
- */
- static Postproc* Create(const std::string& proc_name);
- /**
- * @brief Initializes postprocessing parameters.
- *
- * @param[in] params The postprocessing parameters.
- *
- * @return Returns ture for success, otherwise returns false.
- **/
- virtual bool Init(const std::unordered_map<std::string, std::string> ¶ms) { return true; }
- /**
- * @brief Sets threshold.
- *
- * @param[in] threshold The value between 0 and 1.
- *
- * @return No return value.
- */
- void SetThreshold(const float threshold);
- /**
- * @brief Executes postproc on neural network outputs.
- *
- * @param[in] net_outputs Neural network outputs, and the data is stored on the host.
- * @param[in] model Model information including input shape and output shape.
- * @param[in,out] package Smart pointer of ``CNFrameInfo`` to store processed data.
- *
- * @return Returns 0 if successful, otherwise returns -1.
- *
- * @note
- * - This function is called by the Inferencer module when the parameter `mem_on_mlu_for_postproc`
- is set to false and `obj_infer` is set to false. See the Inferencer parameter description for details.
- */
- virtual int Execute(const std::vector<float*>& net_outputs, const std::shared_ptr<edk::ModelLoader>& model,
- const CNFrameInfoPtr& package) { return 0; }
- /**
- * @brief Execute post processing on neural network outputs.
- *
- * @param[in] net_outputs Neural network outputs, and the data is stored on the MLU.
- * @param[in] model Model information including input shape and output shape.
- * @param[in,out] packages The batched frames's result of postprocessing.
- *
- * @return Returns 0 if successful, otherwise returns -1.
- *
- * @note
- * - This function is called by the Inferencer module when the parameter ``mem_on_mlu_for_postproc``
- is set to true and ``obj_infer`` is set to false.
- See the Inferencer parameter description for details.
- */
- virtual int Execute(const std::vector<void*>& net_outputs, const std::shared_ptr<edk::ModelLoader>& model,
- const std::vector<CNFrameInfoPtr> &packages) { return 0; }
- protected:
- float threshold_ = 0;
- }; // class Postproc
- /**
- * @class ObjPostproc
- *
- * @brief ObjPostproc is the base class of object post processing.
- */
- class ObjPostproc : virtual public ReflexObjectEx<ObjPostproc> {
- public:
- /**
- * @brief Destructs an object.
- *
- * @return No return value.
- */
- virtual ~ObjPostproc() = 0;
- /**
- * @brief Creates a postprocess object with the given postprocess's class name.
- *
- * @param[in] proc_name The postprocess class name.
- *
- * @return The pointer to postprocess object.
- */
- static ObjPostproc* Create(const std::string& proc_name);
- /**
- * @brief Initializes postprocessing parameters.
- *
- * @param[in] params The postprocessing parameters.
- *
- * @return Returns ture for success, otherwise returns false.
- **/
- virtual bool Init(const std::unordered_map<std::string, std::string> ¶ms) { return true; }
- /**
- * @brief Sets threshold.
- *
- * @param[in] threshold The value between 0 and 1.
- *
- * @return No return value.
- */
- void SetThreshold(const float threshold);
- /**
- * @brief Executes post processing on neural network outputs.
- *
- * @param[in] net_outputs Neural network outputs, and the data is stored on the host.
- * @param[in] model Model information including input shape and output shape.
- * @param[in,out] finfo Smart pointer of ``CNFrameInfo`` to store processed data.
- * @param[in] pobj The deduced object information.
- *
- * @return Returns 0 if successful, otherwise returns -1.
- *
- * @note
- * - This function is called by the Inferencer module when the parameter
- ``mem_on_mlu_for_postproc`` is set to false and ``obj_infer`` is set to true.
- See the Inferencer parameter description for details.
- */
- virtual int Execute(const std::vector<float*>& net_outputs, const std::shared_ptr<edk::ModelLoader>& model,
- const CNFrameInfoPtr& finfo, const std::shared_ptr<CNInferObject>& pobj) { return 0; }
- /**
- * @brief Execute post processing on neural network outputs.
- *
- * @param[in] net_outputs Neural network outputs, and the data is stored on the MLU.
- * @param[in] model Model information including input shape and output shape.
- * @param[in,out] obj_infos The batched frames's result of postprocessing.
- *
- * @return Returns 0 if successful, otherwise returns -1.
- *
- * @note
- * - This function is called by the Inferencer module when the parameter
- ``mem_on_mlu_for_postproc`` is set to true and ``obj_infer`` is set to true.
- See the Inferencer parameter description for details.
- */
- virtual int Execute(const std::vector<void*>& net_outputs, const std::shared_ptr<edk::ModelLoader>& model,
- const std::vector<std::pair<CNFrameInfoPtr, std::shared_ptr<CNInferObject>>>& obj_infos) {
- return 0;
- }
- protected:
- float threshold_ = 0;
- }; // class ObjPostproc
- } // namespace cnstream
- #endif // MODULES_INFERENCE_INCLUDE_POSTPROC_HPP_
|