|
пре 3 година | |
---|---|---|
.github | пре 3 година | |
3rdparty | пре 3 година | |
cmake | пре 3 година | |
data | пре 3 година | |
docker | пре 3 година | |
easydk | пре 3 година | |
framework | пре 3 година | |
modules | пре 3 година | |
modules_contrib | пре 3 година | |
python | пре 3 година | |
source | пре 3 година | |
tools | пре 3 година | |
.dockerignore | пре 3 година | |
.gitignore | пре 3 година | |
.gitmodules | пре 3 година | |
CMakeLists.txt | пре 3 година | |
CPPLINT.cfg | пре 3 година | |
README.md | пре 3 година |
CNStream is a streaming framework with plug-ins. It is used to connect other modules, includes basic functionalities, libraries, and essential elements.
CNStream provides the following built-in modules:
To start using CNStream, please refer to the chapter of quick start in the document of Cambricon-CNStream-User-Guild-CN.pdf.
Classification | Object Detection |
---|---|
![]() |
![]() |
Object Tracking | License plate recognization |
---|---|
![]() |
![]() |
Body Pose | Vehicle Detection |
---|---|
![]() |
![]() |
You should find a sample from samples/simple_run_pipeline/simple_run_pipeline.cpp
that helps developers easily understand how to develop a classic classification or detection application based on CNStream pipeline.
This sample supports typical classification and detection neural networks like vgg resnet ssd fasterrcnn yolo-vx and so on.
This sample supports images or video file as input.
Modify the files.list_video
file, which is under the samples
directory, to replace the video path. Each line represents one stream. It is recommended to use an absolute path or use a relative path relative to the executor path.
Check out the Examples page for tutorials on how to use CNStream. Concepts page for basic definitions.
Discuss - General community discussion around CNStream.