بدون توضیح

Your Name 25a2ff36d6 version 3.5.5 msg: 2 سال پیش
.github b18dd2e801 3.0.2 3 سال پیش
3rdparty 656c018f53 version 3.5.2 msg: 加入夜间过滤器的开关 2 سال پیش
cmake b18dd2e801 3.0.2 3 سال پیش
data c7a817f0b0 version 3.5.0 msg: 算法更新为1.2.3,优化部分误识别 2 سال پیش
docker b18dd2e801 3.0.2 3 سال پیش
easydk 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 سال پیش
framework 60cdcaae45 version 3.4.2 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 سال پیش
modules 656c018f53 version 3.5.2 msg: 加入夜间过滤器的开关 2 سال پیش
modules_contrib b18dd2e801 3.0.2 3 سال پیش
python b18dd2e801 3.0.2 3 سال پیش
source 25a2ff36d6 version 3.5.5 msg: 2 سال پیش
tools bbdf8559ac version 修改流地址文件读取位置 msg: 优化cnstream运行流程、优化推理资源分配、提高稳定性 3 سال پیش
.dockerignore b18dd2e801 3.0.2 3 سال پیش
.gitignore b18dd2e801 3.0.2 3 سال پیش
.gitmodules b18dd2e801 3.0.2 3 سال پیش
CMakeLists.txt b18dd2e801 3.0.2 3 سال پیش
CPPLINT.cfg b18dd2e801 3.0.2 3 سال پیش
README.md b18dd2e801 3.0.2 3 سال پیش

README.md

Cambricon CNStream

CNStream is a streaming framework with plug-ins. It is used to connect other modules, includes basic functionalities, libraries, and essential elements.

CNStream provides the following built-in modules:

  • source: Support RTSP, video file, images and elementary stream in memory (H.264, H.265, and JPEG decoding).
  • inference: MLU-based inference accelerator for detection and classification.
  • inference2: Based on infer server to run inference, preprocessing and postprocessing.
  • osd (On-screen display): Module for highlighting objects and text overlay.
  • encode: Encode videos or images.
  • display: Display the video on screen.
  • tracker: Multi-object tracking.
  • rtsp_sink:Push RTSP stream to internet.

Getting started

To start using CNStream, please refer to the chapter of quick start in the document of Cambricon-CNStream-User-Guild-CN.pdf.

Samples

Classification Object Detection
Classification Object Detection
Object Tracking License plate recognization
Object Tracking License plate recognization
Body Pose Vehicle Detection
Body Pose Vehicle Detection

Best Practices

How to build a classic classification or detection application based on CNStream?

You should find a sample from samples/simple_run_pipeline/simple_run_pipeline.cpp that helps developers easily understand how to develop a classic classification or detection application based on CNStream pipeline.

This sample supports typical classification and detection neural networks like vgg resnet ssd fasterrcnn yolo-vx and so on.

This sample supports images or video file as input.

How to change the input video file?

Modify the files.list_video file, which is under the samples directory, to replace the video path. Each line represents one stream. It is recommended to use an absolute path or use a relative path relative to the executor path.

Documentation

Cambricon Forum Docs

Check out the Examples page for tutorials on how to use CNStream. Concepts page for basic definitions.

Community forum

Discuss - General community discussion around CNStream.