/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "../unit_test/unit_test.h" #include "libyuv/basic_types.h" #include "libyuv/compare.h" #include "libyuv/cpu_id.h" #include "libyuv/video_common.h" #ifdef ENABLE_ROW_TESTS #include "libyuv/compare_row.h" /* For HammingDistance_C */ #endif namespace libyuv { // hash seed of 5381 recommended. static uint32_t ReferenceHashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) { uint32_t hash = seed; if (count > 0) { do { hash = hash * 33 + *src++; } while (--count); } return hash; } TEST_F(LibYUVCompareTest, Djb2_Test) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest); align_buffer_page_end(src_b, kMaxTest); const char* fox = "The quick brown fox jumps over the lazy dog" " and feels as if he were in the seventh heaven of typography" " together with Hermann Zapf"; uint32_t foxhash = HashDjb2(reinterpret_cast(fox), 131, 5381); const uint32_t kExpectedFoxHash = 2611006483u; EXPECT_EQ(kExpectedFoxHash, foxhash); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = (fastrand() & 0xff); src_b[i] = (fastrand() & 0xff); } // Compare different buffers. Expect hash is different. uint32_t h1 = HashDjb2(src_a, kMaxTest, 5381); uint32_t h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make last half same. Expect hash is different. memcpy(src_a + kMaxTest / 2, src_b + kMaxTest / 2, kMaxTest / 2); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make first half same. Expect hash is different. memcpy(src_a + kMaxTest / 2, src_a, kMaxTest / 2); memcpy(src_b + kMaxTest / 2, src_b, kMaxTest / 2); memcpy(src_a, src_b, kMaxTest / 2); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make same. Expect hash is same. memcpy(src_a, src_b, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_EQ(h1, h2); // Mask seed different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 1234); EXPECT_NE(h1, h2); // Make one byte different in middle. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[kMaxTest / 2]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make first byte different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[0]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make last byte different. Expect hash is different. memcpy(src_a, src_b, kMaxTest); ++src_b[kMaxTest - 1]; h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_b, kMaxTest, 5381); EXPECT_NE(h1, h2); // Make a zeros. Test different lengths. Expect hash is different. memset(src_a, 0, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 5381); h2 = HashDjb2(src_a, kMaxTest / 2, 5381); EXPECT_NE(h1, h2); // Make a zeros and seed of zero. Test different lengths. Expect hash is same. memset(src_a, 0, kMaxTest); h1 = HashDjb2(src_a, kMaxTest, 0); h2 = HashDjb2(src_a, kMaxTest / 2, 0); EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkDjb2_Opt) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = i; } uint32_t h2 = ReferenceHashDjb2(src_a, kMaxTest, 5381); uint32_t h1; for (int i = 0; i < benchmark_iterations_; ++i) { h1 = HashDjb2(src_a, kMaxTest, 5381); } EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVCompareTest, BenchmarkDjb2_Unaligned) { const int kMaxTest = benchmark_width_ * benchmark_height_; align_buffer_page_end(src_a, kMaxTest + 1); for (int i = 0; i < kMaxTest; ++i) { src_a[i + 1] = i; } uint32_t h2 = ReferenceHashDjb2(src_a + 1, kMaxTest, 5381); uint32_t h1; for (int i = 0; i < benchmark_iterations_; ++i) { h1 = HashDjb2(src_a + 1, kMaxTest, 5381); } EXPECT_EQ(h1, h2); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVCompareTest, BenchmarkARGBDetect_Opt) { uint32_t fourcc; const int kMaxTest = benchmark_width_ * benchmark_height_ * 4; align_buffer_page_end(src_a, kMaxTest); for (int i = 0; i < kMaxTest; ++i) { src_a[i] = 255; } src_a[0] = 0; fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(static_cast(libyuv::FOURCC_BGRA), fourcc); src_a[0] = 255; src_a[3] = 0; fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(static_cast(libyuv::FOURCC_ARGB), fourcc); src_a[3] = 255; for (int i = 0; i < benchmark_iterations_; ++i) { fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } EXPECT_EQ(0u, fourcc); free_aligned_buffer_page_end(src_a); } TEST_F(LibYUVCompareTest, BenchmarkARGBDetect_Unaligned) { uint32_t fourcc; const int kMaxTest = benchmark_width_ * benchmark_height_ * 4 + 1; align_buffer_page_end(src_a, kMaxTest); for (int i = 1; i < kMaxTest; ++i) { src_a[i] = 255; } src_a[0 + 1] = 0; fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(static_cast(libyuv::FOURCC_BGRA), fourcc); src_a[0 + 1] = 255; src_a[3 + 1] = 0; fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); EXPECT_EQ(static_cast(libyuv::FOURCC_ARGB), fourcc); src_a[3 + 1] = 255; for (int i = 0; i < benchmark_iterations_; ++i) { fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } EXPECT_EQ(0u, fourcc); free_aligned_buffer_page_end(src_a); } #ifdef ENABLE_ROW_TESTS TEST_F(LibYUVCompareTest, BenchmarkHammingDistance_Opt) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); // Test known value memcpy(src_a, "test0123test4567", 16); memcpy(src_b, "tick0123tock4567", 16); uint32_t h1 = HammingDistance_C(src_a, src_b, 16); EXPECT_EQ(16u, h1); // Test C vs OPT on random buffer MemRandomize(src_a, kMaxWidth); MemRandomize(src_b, kMaxWidth); uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); int count = benchmark_iterations_ * ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); for (int i = 0; i < count; ++i) { #if defined(HAS_HAMMINGDISTANCE_NEON) h1 = HammingDistance_NEON(src_a, src_b, kMaxWidth); #elif defined(HAS_HAMMINGDISTANCE_AVX2) int has_avx2 = TestCpuFlag(kCpuHasAVX2); if (has_avx2) { h1 = HammingDistance_AVX2(src_a, src_b, kMaxWidth); } else { int has_sse42 = TestCpuFlag(kCpuHasSSE42); if (has_sse42) { h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); } else { int has_ssse3 = TestCpuFlag(kCpuHasSSSE3); if (has_ssse3) { h1 = HammingDistance_SSSE3(src_a, src_b, kMaxWidth); } else { h1 = HammingDistance_C(src_a, src_b, kMaxWidth); } } } #elif defined(HAS_HAMMINGDISTANCE_SSE42) int has_sse42 = TestCpuFlag(kCpuHasSSE42); if (has_sse42) { h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); } else { h1 = HammingDistance_C(src_a, src_b, kMaxWidth); } #else h1 = HammingDistance_C(src_a, src_b, kMaxWidth); #endif } EXPECT_EQ(h0, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkHammingDistance_C) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); // Test known value memcpy(src_a, "test0123test4567", 16); memcpy(src_b, "tick0123tock4567", 16); uint32_t h1 = HammingDistance_C(src_a, src_b, 16); EXPECT_EQ(16u, h1); // Test C vs OPT on random buffer MemRandomize(src_a, kMaxWidth); MemRandomize(src_b, kMaxWidth); uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); int count = benchmark_iterations_ * ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); for (int i = 0; i < count; ++i) { h1 = HammingDistance_C(src_a, src_b, kMaxWidth); } EXPECT_EQ(h0, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkHammingDistance) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); memcpy(src_a, "test0123test4567", 16); memcpy(src_b, "tick0123tock4567", 16); uint64_t h1 = ComputeHammingDistance(src_a, src_b, 16); EXPECT_EQ(16u, h1); // Test C vs OPT on random buffer MemRandomize(src_a, kMaxWidth); MemRandomize(src_b, kMaxWidth); uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); int count = benchmark_iterations_ * ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); for (int i = 0; i < count; ++i) { h1 = ComputeHammingDistance(src_a, src_b, kMaxWidth); } EXPECT_EQ(h0, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } // Tests low levels match reference C for specified size. // The opt implementations have size limitations // For NEON the counters are 16 bit so the shorts overflow after 65536 bytes. // So doing one less iteration of the loop is the maximum. #if defined(HAS_HAMMINGDISTANCE_NEON) static const int kMaxOptCount = 65536 - 32; // 65504 #else static const int kMaxOptCount = (1 << (32 - 3)) - 64; // 536870848 #endif TEST_F(LibYUVCompareTest, TestHammingDistance_Opt) { uint32_t h1 = 0; const int kMaxWidth = (benchmark_width_ * benchmark_height_ + 31) & ~31; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 255u, kMaxWidth); memset(src_b, 0u, kMaxWidth); uint64_t h0 = ComputeHammingDistance(src_a, src_b, kMaxWidth); EXPECT_EQ(kMaxWidth * 8ULL, h0); for (int i = 0; i < benchmark_iterations_; ++i) { #if defined(HAS_HAMMINGDISTANCE_NEON) h1 = HammingDistance_NEON(src_a, src_b, kMaxWidth); #elif defined(HAS_HAMMINGDISTANCE_AVX2) int has_avx2 = TestCpuFlag(kCpuHasAVX2); if (has_avx2) { h1 = HammingDistance_AVX2(src_a, src_b, kMaxWidth); } else { int has_sse42 = TestCpuFlag(kCpuHasSSE42); if (has_sse42) { h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); } else { int has_ssse3 = TestCpuFlag(kCpuHasSSSE3); if (has_ssse3) { h1 = HammingDistance_SSSE3(src_a, src_b, kMaxWidth); } else { h1 = HammingDistance_C(src_a, src_b, kMaxWidth); } } } #elif defined(HAS_HAMMINGDISTANCE_SSE42) int has_sse42 = TestCpuFlag(kCpuHasSSE42); if (has_sse42) { h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); } else { h1 = HammingDistance_C(src_a, src_b, kMaxWidth); } #else h1 = HammingDistance_C(src_a, src_b, kMaxWidth); #endif } // A large count will cause the low level to potentially overflow so the // result can not be expected to be correct. // TODO(fbarchard): Consider expecting the low 16 bits to match. if (kMaxWidth <= kMaxOptCount) { EXPECT_EQ(kMaxWidth * 8U, h1); } else { if (kMaxWidth * 8ULL != static_cast(h1)) { printf( "warning - HammingDistance_Opt %u does not match %llu " "but length of %u is longer than guaranteed.\n", h1, kMaxWidth * 8ULL, kMaxWidth); } else { printf( "warning - HammingDistance_Opt %u matches but length of %u " "is longer than guaranteed.\n", h1, kMaxWidth); } } free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } #endif // ENABLE_ROW_TESTS TEST_F(LibYUVCompareTest, TestHammingDistance) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); memset(src_a, 255u, benchmark_width_ * benchmark_height_); memset(src_b, 0, benchmark_width_ * benchmark_height_); uint64_t h1 = 0; for (int i = 0; i < benchmark_iterations_; ++i) { h1 = ComputeHammingDistance(src_a, src_b, benchmark_width_ * benchmark_height_); } EXPECT_EQ(benchmark_width_ * benchmark_height_ * 8ULL, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkSumSquareError_Opt) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); memcpy(src_a, "test0123test4567", 16); memcpy(src_b, "tick0123tock4567", 16); uint64_t h1 = ComputeSumSquareError(src_a, src_b, 16); EXPECT_EQ(790u, h1); for (int i = 0; i < kMaxWidth; ++i) { src_a[i] = i; src_b[i] = i; } memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); int count = benchmark_iterations_ * ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); for (int i = 0; i < count; ++i) { h1 = ComputeSumSquareError(src_a, src_b, kMaxWidth); } EXPECT_EQ(0u, h1); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, SumSquareError) { const int kMaxWidth = 4096 * 3; align_buffer_page_end(src_a, kMaxWidth); align_buffer_page_end(src_b, kMaxWidth); memset(src_a, 0, kMaxWidth); memset(src_b, 0, kMaxWidth); uint64_t err; err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(0u, err); memset(src_a, 1, kMaxWidth); err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(static_cast(err), kMaxWidth); memset(src_a, 190, kMaxWidth); memset(src_b, 193, kMaxWidth); err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(static_cast(err), kMaxWidth * 3 * 3); for (int i = 0; i < kMaxWidth; ++i) { src_a[i] = (fastrand() & 0xff); src_b[i] = (fastrand() & 0xff); } MaskCpuFlags(disable_cpu_flags_); uint64_t c_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); MaskCpuFlags(benchmark_cpu_info_); uint64_t opt_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); EXPECT_EQ(c_err, opt_err); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkPsnr_Opt) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) { CalcFramePsnr(src_a, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); } opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, BenchmarkPsnr_Unaligned) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_ + 1); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i + 1] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) { CalcFramePsnr(src_a + 1, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); } opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, Psnr) { const int kSrcWidth = benchmark_width_; const int kSrcHeight = benchmark_height_; const int b = 128; const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); const int kSrcStride = 2 * b + kSrcWidth; align_buffer_page_end(src_a, kSrcPlaneSize); align_buffer_page_end(src_b, kSrcPlaneSize); memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); double err; err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(err, kMaxPsnr); memset(src_a, 255, kSrcPlaneSize); err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(err, 0.0); memset(src_a, 1, kSrcPlaneSize); err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_GT(err, 48.0); EXPECT_LT(err, 49.0); for (int i = 0; i < kSrcPlaneSize; ++i) { src_a[i] = i; } err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_GT(err, 2.0); if (kSrcWidth * kSrcHeight >= 256) { EXPECT_LT(err, 6.0); } memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); for (int i = b; i < (kSrcHeight + b); ++i) { for (int j = b; j < (kSrcWidth + b); ++j) { src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); } } MaskCpuFlags(disable_cpu_flags_); double c_err, opt_err; c_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); MaskCpuFlags(benchmark_cpu_info_); opt_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); EXPECT_EQ(opt_err, c_err); free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, DISABLED_BenchmarkSsim_Opt) { align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { src_a[i] = i; src_b[i] = i; } MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (int i = 0; i < benchmark_iterations_; ++i) { CalcFrameSsim(src_a, benchmark_width_, src_b, benchmark_width_, benchmark_width_, benchmark_height_); } opt_time = (get_time() - opt_time) / benchmark_iterations_; printf("BenchmarkSsim_Opt - %8.2f us opt\n", opt_time * 1e6); EXPECT_EQ(0, 0); // Pass if we get this far. free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } TEST_F(LibYUVCompareTest, Ssim) { const int kSrcWidth = benchmark_width_; const int kSrcHeight = benchmark_height_; const int b = 128; const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); const int kSrcStride = 2 * b + kSrcWidth; align_buffer_page_end(src_a, kSrcPlaneSize); align_buffer_page_end(src_b, kSrcPlaneSize); memset(src_a, 0, kSrcPlaneSize); memset(src_b, 0, kSrcPlaneSize); if (kSrcWidth <= 8 || kSrcHeight <= 8) { printf("warning - Ssim size too small. Testing function executes.\n"); } double err; err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_EQ(err, 1.0); } memset(src_a, 255, kSrcPlaneSize); err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_LT(err, 0.0001); } memset(src_a, 1, kSrcPlaneSize); err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_GT(err, 0.0001); EXPECT_LT(err, 0.9); } for (int i = 0; i < kSrcPlaneSize; ++i) { src_a[i] = i; } err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_GT(err, 0.0); EXPECT_LT(err, 0.01); } for (int i = b; i < (kSrcHeight + b); ++i) { for (int j = b; j < (kSrcWidth + b); ++j) { src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); } } MaskCpuFlags(disable_cpu_flags_); double c_err, opt_err; c_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); MaskCpuFlags(benchmark_cpu_info_); opt_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, kSrcHeight); if (kSrcWidth > 8 && kSrcHeight > 8) { EXPECT_EQ(opt_err, c_err); } free_aligned_buffer_page_end(src_a); free_aligned_buffer_page_end(src_b); } } // namespace libyuv