/************************************************************************* * Copyright (C) [2019] by Cambricon, Inc. All rights reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *************************************************************************/ #include #include #include #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #if (CV_MAJOR_VERSION >= 3) #include "opencv2/imgcodecs/imgcodecs.hpp" #endif #include "cnstream_frame_va.hpp" #include "easyinfer/model_loader.h" #include "easyinfer/shape.h" #include "preproc.hpp" #include "cnstream_logging.hpp" /** * @brief standard pre process */ class PreprocCpu : public cnstream::Preproc { public: /** * @brief Execute preproc on origin data * * @param net_inputs: neural network inputs * @param model: model information(you can get input shape and output shape from model) * @param package: smart pointer of struct to store origin data * * @return return 0 if succeed * * @attention net_inputs is a pointer to pre-allocated cpu memory */ int Execute(const std::vector& net_inputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& package) override; DECLARE_REFLEX_OBJECT_EX(PreprocCpu, cnstream::Preproc); }; // class PreprocCpu IMPLEMENT_REFLEX_OBJECT_EX(PreprocCpu, cnstream::Preproc) int PreprocCpu::Execute(const std::vector& net_inputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& package) { // check params edk::ShapeEx input_shape; try { input_shape = model->InputShape(0); if (net_inputs.size() != 1 || (input_shape.C() != 3 && input_shape.C() != 4)) { LOGE(DEMO) << "[PreprocCpu] model input shape not supported, net_input.size = " << net_inputs.size() << ", input_shape.c = " << input_shape.C(); return -1; } } catch (const edk::Exception& e) { LOGE(DEMO) << e.what(); return -1; } LOGI(DEMO) << "[PreprocCpu] do preproc..."; cnstream::CNDataFramePtr frame = package->collection.Get(cnstream::kCNDataFrameTag); int width = frame->width; int height = frame->height; int dst_w = input_shape.W(); int dst_h = input_shape.H(); uint8_t* img_data = new (std::nothrow) uint8_t[frame->GetBytes()]; if (!img_data) { LOGE(DEMO) << "Failed to alloc memory, size: " << frame->GetBytes(); return -1; } uint8_t* t = img_data; for (int i = 0; i < frame->GetPlanes(); ++i) { memcpy(t, frame->data[i]->GetCpuData(), frame->GetPlaneBytes(i)); t += frame->GetPlaneBytes(i); } // convert color space cv::Mat img; switch (frame->fmt) { case cnstream::CNDataFormat::CN_PIXEL_FORMAT_BGR24: img = cv::Mat(height, width, CV_8UC3, img_data); break; case cnstream::CNDataFormat::CN_PIXEL_FORMAT_RGB24: img = cv::Mat(height, width, CV_8UC3, img_data); cv::cvtColor(img, img, cv::COLOR_RGB2BGR); break; case cnstream::CNDataFormat::CN_PIXEL_FORMAT_YUV420_NV12: { img = cv::Mat(height * 3 / 2, width, CV_8UC1, img_data); cv::Mat bgr(height, width, CV_8UC3); cv::cvtColor(img, bgr, cv::COLOR_YUV2BGR_NV12); img = bgr; } break; case cnstream::CNDataFormat::CN_PIXEL_FORMAT_YUV420_NV21: { img = cv::Mat(height * 3 / 2, width, CV_8UC1, img_data); cv::Mat bgr(height, width, CV_8UC3); cv::cvtColor(img, bgr, cv::COLOR_YUV2BGR_NV21); img = bgr; } break; default: LOGW(DEMO) << "[PreprocCpu] Unsupport pixel format."; delete[] img_data; return -1; } // resize if needed if (height != dst_h || width != dst_w) { cv::Mat dst(dst_h, dst_w, CV_8UC3); cv::resize(img, dst, cv::Size(dst_w, dst_h)); img.release(); img = dst; } // since model input data type is float, convert image to float cv::Mat dst(dst_h, dst_w, CV_32FC3, net_inputs[0]); img.convertTo(dst, CV_32F); delete[] img_data; return 0; } /** * @brief standard object pre process */ class ObjPreprocCpu : public cnstream::ObjPreproc { public: int Execute(const std::vector& net_inputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& finfo, const std::shared_ptr& pobj) override; DECLARE_REFLEX_OBJECT_EX(ObjPreprocCpu, cnstream::ObjPreproc); }; // class ObjPreprocCpu IMPLEMENT_REFLEX_OBJECT_EX(ObjPreprocCpu, cnstream::ObjPreproc) int ObjPreprocCpu::Execute(const std::vector& net_inputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& finfo, const std::shared_ptr& pobj) { cnstream::CNDataFramePtr frame = finfo->collection.Get(cnstream::kCNDataFrameTag); // origin frame cv::Mat frame_bgr = frame->ImageBGR(); // crop objct from frame int w = frame->width; int h = frame->height; cv::Rect obj_roi(pobj->bbox.x * w, pobj->bbox.y * h, pobj->bbox.w * w, pobj->bbox.h * h); cv::Mat obj_bgr = frame_bgr(obj_roi); // resize int input_w = model->InputShape(0).W(); int input_h = model->InputShape(0).H(); cv::Mat obj_bgr_resized; cv::resize(obj_bgr, obj_bgr_resized, cv::Size(input_w, input_h)); // bgr2bgra cv::Mat obj_bgra; cv::Mat a(input_h, input_w, CV_8UC1, cv::Scalar(0.0)); std::vector vec_mat = {obj_bgr_resized, a}; cv::merge(std::move(vec_mat), obj_bgra); // convert to float32, required by inferencer module cv::Mat obj_bgra_float32(input_h, input_w, CV_32FC4, net_inputs[0]); obj_bgra.convertTo(obj_bgra_float32, CV_32FC4); return 0; }