/************************************************************************* * Copyright (C) [2021] by Cambricon, Inc. All rights reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *************************************************************************/ #include #include #include #include #include "cnstream_frame_va.hpp" #include "cnstream_logging.hpp" #include "video_postproc.hpp" /** * @brief Video postprocessing for classification neural network */ class VideoPostprocClassification : public cnstream::VideoPostproc { public: /** * @brief Execute secondary classification neural networks postprocessing * * @param output_data: postproc result. The result of postprocessing should be set to it. * You could set any type of data to this parameter and get it in UserProcess function. * @param model_output: the raw output data from neural network * @param model_info: model information, e.g., input/output number, shape and etc. * * @return return true if succeed * @see VideoObjPostprocClassification::UserProcess */ bool Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output, const infer_server::ModelInfo& model_info) override; DECLARE_REFLEX_OBJECT_EX(VideoPostprocClassification, cnstream::VideoPostproc) }; // classd VideoPostprocClassification IMPLEMENT_REFLEX_OBJECT_EX(VideoPostprocClassification, cnstream::VideoPostproc) bool VideoPostprocClassification::Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output, const infer_server::ModelInfo& model_info) { LOGF_IF(DEMO, model_info.InputNum() != 1); LOGF_IF(DEMO, model_info.OutputNum() != 1); LOGF_IF(DEMO, model_output.buffers.size() != 1); const float* data = reinterpret_cast(model_output.buffers[0].Data()); auto len = model_info.OutputShape(0).DataCount(); auto score_ptr = data; float max_score = 0; int label = 0; for (decltype(len) i = 0; i < len; ++i) { auto score = *(score_ptr + i); if (score > max_score) { max_score = score; label = i; } } auto obj = std::make_shared(); obj->id = std::to_string(label); obj->score = max_score; cnstream::CNFrameInfoPtr frame = output_data->GetUserData(); cnstream::CNInferObjsPtr objs_holder = frame->collection.Get(cnstream::kCNInferObjsTag); std::lock_guard objs_mutex(objs_holder->mutex_); objs_holder->objs_.push_back(obj); return true; } /** * @brief Video postprocessing for secondary classification */ class VideoObjPostprocClassification : public cnstream::VideoPostproc { public: /** * @brief Execute secondary classification neural networks postprocessing * * @param output_data: postproc result. The result of postprocessing should be set to it. * You could set any type of data to this parameter and get it in UserProcess function. * @param model_output: the raw output data from neural network * @param model_info: model information, e.g., input/output number, shape and etc. * * @return return true if succeed * @see VideoObjPostprocClassification::UserProcess */ bool Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output, const infer_server::ModelInfo& model_info) override; DECLARE_REFLEX_OBJECT_EX(VideoObjPostprocClassification, cnstream::VideoPostproc) }; // classd VideoObjPostprocClassification IMPLEMENT_REFLEX_OBJECT_EX(VideoObjPostprocClassification, cnstream::VideoPostproc) bool VideoObjPostprocClassification::Execute(infer_server::InferData* output_data, const infer_server::ModelIO& model_output, const infer_server::ModelInfo& model_info) { LOGF_IF(DEMO, model_info.InputNum() != 1); LOGF_IF(DEMO, model_info.OutputNum() != 1); LOGF_IF(DEMO, model_output.buffers.size() != 1); const float* data = reinterpret_cast(model_output.buffers[0].Data()); auto len = model_info.OutputShape(0).DataCount(); auto score_ptr = data; float max_score = 0; int label = 0; for (decltype(len) i = 0; i < len; ++i) { auto score = *(score_ptr + i); if (score > max_score) { max_score = score; label = i; } } cnstream::CNInferAttr attr; attr.id = 0; attr.value = label; attr.score = max_score; std::shared_ptr obj = output_data->GetUserData>(); obj->AddAttribute("classification", attr); return true; }