/************************************************************************* * Copyright (C) [2019] by Cambricon, Inc. All rights reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *************************************************************************/ #include #include #include #include #include "cnstream_frame_va.hpp" #include "postproc.hpp" #include "cnstream_logging.hpp" class PostprocClassification : public cnstream::Postproc { public: int Execute(const std::vector& net_outputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& package) override; DECLARE_REFLEX_OBJECT_EX(PostprocClassification, cnstream::Postproc) }; // classd PostprocClassification IMPLEMENT_REFLEX_OBJECT_EX(PostprocClassification, cnstream::Postproc) int PostprocClassification::Execute(const std::vector& net_outputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& package) { if (net_outputs.size() != 1) { LOGE(DEMO) << "[Warning] classification neuron network only has one output," " but get " + std::to_string(net_outputs.size()); return -1; } auto data = net_outputs[0]; auto len = model->OutputShape(0).DataCount(); auto pscore = data; float mscore = 0; int label = 0; for (decltype(len) i = 0; i < len; ++i) { auto score = *(pscore + i); if (score > mscore) { mscore = score; label = i; } } auto obj = std::make_shared(); obj->id = std::to_string(label); obj->score = mscore; cnstream::CNInferObjsPtr objs_holder = package->collection.Get(cnstream::kCNInferObjsTag); std::lock_guard objs_mutex(objs_holder->mutex_); objs_holder->objs_.push_back(obj); return 0; } class ObjPostprocClassification : public cnstream::ObjPostproc { public: int Execute(const std::vector& net_outputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& finfo, const std::shared_ptr& obj) override; DECLARE_REFLEX_OBJECT_EX(ObjPostprocClassification, cnstream::ObjPostproc) }; // classd ObjPostprocClassification IMPLEMENT_REFLEX_OBJECT_EX(ObjPostprocClassification, cnstream::ObjPostproc) int ObjPostprocClassification::Execute(const std::vector& net_outputs, const std::shared_ptr& model, const cnstream::CNFrameInfoPtr& finfo, const std::shared_ptr& obj) { if (net_outputs.size() != 1) { LOGE(DEMO) << "[Warning] classification neuron network only has one output," " but get " + std::to_string(net_outputs.size()); return -1; } auto data = net_outputs[0]; auto len = model->OutputShape(0).DataCount(); auto pscore = data; float mscore = 0; int label = 0; for (decltype(len) i = 0; i < len; ++i) { auto score = *(pscore + i); if (score > mscore) { mscore = score; label = i; } } cnstream::CNInferAttr attr; attr.id = 0; attr.value = label; attr.score = mscore; obj->AddAttribute("classification", attr); return 0; }