123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- from paddle import fluid
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- try:
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.utils.cli import ArgsParser
- import ppdet.utils.checkpoint as checkpoint
- from ppdet.utils.export_utils import save_infer_model, dump_infer_config
- from ppdet.utils.check import check_config, check_version, enable_static_mode
- except ImportError as e:
- if sys.argv[0].find('static') >= 0:
- logger.error("Importing ppdet failed when running static model "
- "with error: {}\n"
- "please try:\n"
- "\t1. run static model under PaddleDetection/static "
- "directory\n"
- "\t2. run 'pip uninstall ppdet' to uninstall ppdet "
- "dynamic version firstly.".format(e))
- sys.exit(-1)
- else:
- raise e
- from paddleslim.prune import Pruner
- from paddleslim.analysis import flops
- def main():
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- check_version()
- main_arch = cfg.architecture
- # Use CPU for exporting inference model instead of GPU
- place = fluid.CPUPlace()
- exe = fluid.Executor(place)
- model = create(main_arch)
- startup_prog = fluid.Program()
- infer_prog = fluid.Program()
- with fluid.program_guard(infer_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['TestReader']['inputs_def']
- inputs_def['use_dataloader'] = False
- feed_vars, _ = model.build_inputs(**inputs_def)
- test_fetches = model.test(feed_vars)
- infer_prog = infer_prog.clone(True)
- exe.run(startup_prog)
- checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)
- pruned_params = FLAGS.pruned_params
- assert (
- FLAGS.pruned_params is not None
- ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
- pruned_params = FLAGS.pruned_params.strip().split(",")
- logger.info("pruned params: {}".format(pruned_params))
- pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
- logger.info("pruned ratios: {}".format(pruned_ratios))
- assert (len(pruned_params) == len(pruned_ratios)
- ), "The length of pruned params and pruned ratios should be equal."
- assert (pruned_ratios > [0] * len(pruned_ratios) and
- pruned_ratios < [1] * len(pruned_ratios)
- ), "The elements of pruned ratios should be in range (0, 1)."
- base_flops = flops(infer_prog)
- pruner = Pruner()
- infer_prog, _, _ = pruner.prune(
- infer_prog,
- fluid.global_scope(),
- params=pruned_params,
- ratios=pruned_ratios,
- place=place,
- only_graph=True)
- pruned_flops = flops(infer_prog)
- logger.info("pruned FLOPS: {}".format(
- float(base_flops - pruned_flops) / base_flops))
- dump_infer_config(FLAGS, cfg)
- save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output",
- help="Directory for storing the output model files.")
- parser.add_argument(
- "-p",
- "--pruned_params",
- default=None,
- type=str,
- help="The parameters to be pruned when calculating sensitivities.")
- parser.add_argument(
- "--pruned_ratios",
- default=None,
- type=str,
- help="The ratios pruned iteratively for each parameter when calculating sensitivities."
- )
- FLAGS = parser.parse_args()
- main()
|