123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from ppdet.core.workspace import register
- __all__ = ['VGG']
- @register
- class VGG(object):
- """
- VGG, see https://arxiv.org/abs/1409.1556
- Args:
- depth (int): the VGG net depth (16 or 19)
- normalizations (list): params list of init scale in l2 norm, skip init
- scale if param is -1.
- with_extra_blocks (bool): whether or not extra blocks should be added
- extra_block_filters (list): in each extra block, params:
- [in_channel, out_channel, padding_size, stride_size, filter_size]
- """
- def __init__(self,
- depth=16,
- with_extra_blocks=False,
- normalizations=[20., -1, -1, -1, -1, -1],
- extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3],
- [128, 256, 0, 1, 3],
- [128, 256, 0, 1, 3]]):
- assert depth in [16, 19], \
- "depth {} not in [16, 19]"
- self.depth = depth
- self.depth_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]}
- self.with_extra_blocks = with_extra_blocks
- self.normalizations = normalizations
- self.extra_block_filters = extra_block_filters
- def __call__(self, input):
- layers = []
- layers += self._vgg_block(input)
- if not self.with_extra_blocks:
- return layers[-1]
- layers += self._add_extras_block(layers[-1])
- norm_cfg = self.normalizations
- for k, v in enumerate(layers):
- if not norm_cfg[k] == -1:
- layers[k] = self._l2_norm_scale(v, init_scale=norm_cfg[k])
- return layers
- def _vgg_block(self, input):
- nums = self.depth_cfg[self.depth]
- vgg_base = [64, 128, 256, 512, 512]
- conv = input
- layers = []
- for k, v in enumerate(vgg_base):
- conv = self._conv_block(
- conv, v, nums[k], name="conv{}_".format(k + 1))
- layers.append(conv)
- if k == 4:
- conv = self._pooling_block(conv, 3, 1, pool_padding=1)
- else:
- conv = self._pooling_block(conv, 2, 2)
- fc6 = self._conv_layer(conv, 1024, 3, 1, 6, dilation=6, name="fc6")
- fc7 = self._conv_layer(fc6, 1024, 1, 1, 0, name="fc7")
- return [layers[3], fc7]
- def _add_extras_block(self, input):
- cfg = self.extra_block_filters
- conv = input
- layers = []
- for k, v in enumerate(cfg):
- assert len(v) == 5, "extra_block_filters size not fix"
- conv = self._extra_block(
- conv,
- v[0],
- v[1],
- v[2],
- v[3],
- v[4],
- name="conv{}_".format(6 + k))
- layers.append(conv)
- return layers
- def _conv_block(self, input, num_filter, groups, name=None):
- conv = input
- for i in range(groups):
- conv = self._conv_layer(
- input=conv,
- num_filters=num_filter,
- filter_size=3,
- stride=1,
- padding=1,
- act='relu',
- name=name + str(i + 1))
- return conv
- def _extra_block(self,
- input,
- num_filters1,
- num_filters2,
- padding_size,
- stride_size,
- filter_size,
- name=None):
- # 1x1 conv
- conv_1 = self._conv_layer(
- input=input,
- num_filters=int(num_filters1),
- filter_size=1,
- stride=1,
- act='relu',
- padding=0,
- name=name + "1")
- # 3x3 conv
- conv_2 = self._conv_layer(
- input=conv_1,
- num_filters=int(num_filters2),
- filter_size=filter_size,
- stride=stride_size,
- act='relu',
- padding=padding_size,
- name=name + "2")
- return conv_2
- def _conv_layer(self,
- input,
- num_filters,
- filter_size,
- stride,
- padding,
- dilation=1,
- act='relu',
- use_cudnn=True,
- name=None):
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- act=act,
- use_cudnn=use_cudnn,
- param_attr=ParamAttr(name=name + "_weights"),
- bias_attr=ParamAttr(name=name + "_biases"),
- name=name + '.conv2d.output.1')
- return conv
- def _pooling_block(self,
- conv,
- pool_size,
- pool_stride,
- pool_padding=0,
- ceil_mode=True):
- pool = fluid.layers.pool2d(
- input=conv,
- pool_size=pool_size,
- pool_type='max',
- pool_stride=pool_stride,
- pool_padding=pool_padding,
- ceil_mode=ceil_mode)
- return pool
- def _l2_norm_scale(self, input, init_scale=1.0, channel_shared=False):
- from paddle.fluid.layer_helper import LayerHelper
- from paddle.fluid.initializer import Constant
- helper = LayerHelper("Scale")
- l2_norm = fluid.layers.l2_normalize(
- input, axis=1) # l2 norm along channel
- shape = [1] if channel_shared else [input.shape[1]]
- scale = helper.create_parameter(
- attr=helper.param_attr,
- shape=shape,
- dtype=input.dtype,
- default_initializer=Constant(init_scale))
- out = fluid.layers.elementwise_mul(
- x=l2_norm,
- y=scale,
- axis=-1 if channel_shared else 1,
- name="conv4_3_norm_scale")
- return out
|