123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import copy
- from collections import OrderedDict
- import paddle.fluid as fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- from ppdet.utils.check import check_version
- from .input_helper import multiscale_def
- __all__ = ['CascadeRCNN']
- @register
- class CascadeRCNN(object):
- """
- Cascade R-CNN architecture, see https://arxiv.org/abs/1712.00726
- Args:
- backbone (object): backbone instance
- rpn_head (object): `RPNhead` instance
- bbox_assigner (object): `BBoxAssigner` instance
- roi_extractor (object): ROI extractor instance
- bbox_head (object): `BBoxHead` instance
- fpn (object): feature pyramid network instance
- """
- __category__ = 'architecture'
- __inject__ = [
- 'backbone', 'fpn', 'rpn_head', 'bbox_assigner', 'roi_extractor',
- 'bbox_head'
- ]
- def __init__(self,
- backbone,
- rpn_head,
- roi_extractor='FPNRoIAlign',
- bbox_head='CascadeBBoxHead',
- bbox_assigner='CascadeBBoxAssigner',
- rpn_only=False,
- fpn='FPN'):
- super(CascadeRCNN, self).__init__()
- check_version('2.0.0-rc0')
- assert fpn is not None, "cascade RCNN requires FPN"
- self.backbone = backbone
- self.fpn = fpn
- self.rpn_head = rpn_head
- self.bbox_assigner = bbox_assigner
- self.roi_extractor = roi_extractor
- self.bbox_head = bbox_head
- self.rpn_only = rpn_only
- # Cascade local cfg
- self.cls_agnostic_bbox_reg = 2
- (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
- self.cascade_bbox_reg_weights = [
- [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
- [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
- [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
- ]
- self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]
- def build(self, feed_vars, mode='train'):
- if mode == 'train':
- required_fields = ['gt_class', 'gt_bbox', 'is_crowd', 'im_info']
- else:
- required_fields = ['im_shape', 'im_info']
- self._input_check(required_fields, feed_vars)
- im = feed_vars['image']
- im_info = feed_vars['im_info']
- if mode == 'train':
- gt_bbox = feed_vars['gt_bbox']
- is_crowd = feed_vars['is_crowd']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- # backbone
- body_feats = self.backbone(im)
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
- for k, v in body_feats.items())
- # FPN
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- # rpn proposals
- rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)
- if mode == 'train':
- #fluid.layers.Print(gt_bbox)
- #fluid.layers.Print(is_crowd)
- rpn_loss = self.rpn_head.get_loss(im_info, gt_bbox, is_crowd)
- else:
- if self.rpn_only:
- im_scale = fluid.layers.slice(
- im_info, [1], starts=[2], ends=[3])
- im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
- rois = rpn_rois / im_scale
- return {'proposal': rois}
- proposal_list = []
- roi_feat_list = []
- rcnn_pred_list = []
- rcnn_target_list = []
- proposals = None
- bbox_pred = None
- max_overlap = None
- for i in range(3):
- if i > 0:
- refined_bbox = self._decode_box(
- proposals,
- bbox_pred,
- curr_stage=i - 1, )
- else:
- refined_bbox = rpn_rois
- if mode == 'train':
- outs = self.bbox_assigner(
- input_rois=refined_bbox,
- feed_vars=feed_vars,
- curr_stage=i,
- max_overlap=max_overlap)
- proposals = outs[0]
- max_overlap = outs[-1]
- rcnn_target_list.append(outs[:-1])
- else:
- proposals = refined_bbox
- proposal_list.append(proposals)
- # extract roi features
- roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
- roi_feat_list.append(roi_feat)
- # bbox head
- cls_score, bbox_pred = self.bbox_head.get_output(
- roi_feat,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
- name='_' + str(i + 1) if i > 0 else '')
- rcnn_pred_list.append((cls_score, bbox_pred))
- if mode == 'train':
- loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
- self.cascade_rcnn_loss_weight)
- loss.update(rpn_loss)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- pred = self.bbox_head.get_prediction(
- im_info, feed_vars['im_shape'], roi_feat_list, rcnn_pred_list,
- proposal_list, self.cascade_bbox_reg_weights,
- self.cls_agnostic_bbox_reg)
- return pred
- def build_multi_scale(self, feed_vars):
- required_fields = ['image', 'im_shape', 'im_info']
- self._input_check(required_fields, feed_vars)
- result = {}
- im_shape = feed_vars['im_shape']
- result['im_shape'] = im_shape
- for i in range(len(self.im_info_names) // 2):
- im = feed_vars[self.im_info_names[2 * i]]
- im_info = feed_vars[self.im_info_names[2 * i + 1]]
- # backbone
- body_feats = self.backbone(im)
- result.update(body_feats)
- # FPN
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- # rpn proposals
- rpn_rois = self.rpn_head.get_proposals(
- body_feats, im_info, mode='test')
- proposal_list = []
- roi_feat_list = []
- rcnn_pred_list = []
- proposals = None
- bbox_pred = None
- for i in range(3):
- if i > 0:
- refined_bbox = self._decode_box(
- proposals,
- bbox_pred,
- curr_stage=i - 1, )
- else:
- refined_bbox = rpn_rois
- proposals = refined_bbox
- proposal_list.append(proposals)
- # extract roi features
- roi_feat = self.roi_extractor(body_feats, proposals,
- spatial_scale)
- roi_feat_list.append(roi_feat)
- # bbox head
- cls_score, bbox_pred = self.bbox_head.get_output(
- roi_feat,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
- name='_' + str(i + 1) if i > 0 else '')
- rcnn_pred_list.append((cls_score, bbox_pred))
- # get mask rois
- rois = proposal_list[2]
- if self.fpn is None:
- last_feat = body_feats[list(body_feats.keys())[-1]]
- roi_feat = self.roi_extractor(last_feat, rois)
- else:
- roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
- pred = self.bbox_head.get_prediction(
- im_info,
- im_shape,
- roi_feat_list,
- rcnn_pred_list,
- proposal_list,
- self.cascade_bbox_reg_weights,
- self.cls_agnostic_bbox_reg,
- return_box_score=True)
- bbox_name = 'bbox_' + str(i)
- score_name = 'score_' + str(i)
- if 'flip' in im.name:
- bbox_name += '_flip'
- score_name += '_flip'
- result[bbox_name] = pred['bbox']
- result[score_name] = pred['score']
- return result
- def _input_check(self, require_fields, feed_vars):
- for var in require_fields:
- assert var in feed_vars, \
- "{} has no {} field".format(feed_vars, var)
- def _decode_box(self, proposals, bbox_pred, curr_stage):
- rcnn_loc_delta_r = fluid.layers.reshape(
- bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
- # only use fg box delta to decode box
- rcnn_loc_delta_s = fluid.layers.slice(
- rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
- refined_bbox = fluid.layers.box_coder(
- prior_box=proposals,
- prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
- target_box=rcnn_loc_delta_s,
- code_type='decode_center_size',
- box_normalized=False,
- axis=1, )
- refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])
- return refined_bbox
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'is_crowd': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(self,
- image_shape=[3, None, None],
- fields=[
- 'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
- 'is_crowd'
- ],
- multi_scale=False,
- num_scales=-1,
- use_flip=None,
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape)
- fields = copy.deepcopy(fields)
- if multi_scale:
- ms_def, ms_fields = multiscale_def(image_shape, num_scales,
- use_flip)
- inputs_def.update(ms_def)
- fields += ms_fields
- self.im_info_names = ['image', 'im_info'] + ms_fields
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars, multi_scale=None):
- if multi_scale:
- return self.build_multi_scale(feed_vars)
- return self.build(feed_vars, 'test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
|