123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.regularizer import L2Decay
- from ppdet.core.workspace import register
- from ppdet.modeling.ops import SSDOutputDecoder
- from ppdet.modeling.losses import SSDWithLmkLoss
- __all__ = ['BlazeFace']
- @register
- class BlazeFace(object):
- """
- BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs,
- see https://arxiv.org/abs/1907.05047
- Args:
- backbone (object): backbone instance
- output_decoder (object): `SSDOutputDecoder` instance
- min_sizes (list|None): min sizes of generated prior boxes.
- max_sizes (list|None): max sizes of generated prior boxes. Default: None.
- steps (list|None): step size of adjacent prior boxes on each feature map.
- num_classes (int): number of output classes
- use_density_prior_box (bool): whether or not use density_prior_box
- instead of prior_box
- densities (list|None): the densities of generated density prior boxes,
- this attribute should be a list or tuple of integers
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'output_decoder']
- __shared__ = ['num_classes', 'with_lmk']
- def __init__(self,
- backbone="BlazeNet",
- output_decoder=SSDOutputDecoder().__dict__,
- min_sizes=[[16., 24.], [32., 48., 64., 80., 96., 128.]],
- max_sizes=None,
- steps=[8., 16.],
- num_classes=2,
- use_density_prior_box=False,
- densities=[[2, 2], [2, 1, 1, 1, 1, 1]],
- with_lmk=False,
- lmk_loss=SSDWithLmkLoss().__dict__):
- super(BlazeFace, self).__init__()
- self.backbone = backbone
- self.num_classes = num_classes
- self.with_lmk = with_lmk
- self.output_decoder = output_decoder
- if isinstance(output_decoder, dict):
- if self.with_lmk:
- output_decoder['return_index'] = True
- self.output_decoder = SSDOutputDecoder(**output_decoder)
- self.min_sizes = min_sizes
- self.max_sizes = max_sizes
- self.steps = steps
- self.use_density_prior_box = use_density_prior_box
- self.densities = densities
- self.landmark = None
- if self.with_lmk and isinstance(lmk_loss, dict):
- self.lmk_loss = SSDWithLmkLoss(**lmk_loss)
- def build(self, feed_vars, mode='train'):
- im = feed_vars['image']
- body_feats = self.backbone(im)
- locs, confs, box, box_var = self._multi_box_head(
- inputs=body_feats,
- image=im,
- num_classes=self.num_classes,
- use_density_prior_box=self.use_density_prior_box)
- if mode == 'train':
- gt_bbox = feed_vars['gt_bbox']
- gt_class = feed_vars['gt_class']
- if self.with_lmk:
- lmk_labels = feed_vars['gt_keypoint']
- lmk_ignore_flag = feed_vars["keypoint_ignore"]
- loss = self.lmk_loss(locs, confs, gt_bbox, gt_class,
- self.landmark, lmk_labels, lmk_ignore_flag,
- box, box_var)
- else:
- loss = fluid.layers.ssd_loss(
- locs,
- confs,
- gt_bbox,
- gt_class,
- box,
- box_var,
- overlap_threshold=0.35,
- neg_overlap=0.35)
- loss = fluid.layers.reduce_sum(loss)
- return {'loss': loss}
- else:
- if self.with_lmk:
- pred, face_index = self.output_decoder(locs, confs, box,
- box_var)
- return {
- 'bbox': pred,
- 'face_index': face_index,
- 'prior_boxes': box,
- 'landmark': self.landmark
- }
- else:
- pred = self.output_decoder(locs, confs, box, box_var)
- return {'bbox': pred}
- def _multi_box_head(self,
- inputs,
- image,
- num_classes=2,
- use_density_prior_box=False):
- def permute_and_reshape(input, last_dim):
- trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
- compile_shape = [0, -1, last_dim]
- return fluid.layers.reshape(trans, shape=compile_shape)
- locs, confs = [], []
- boxes, vars = [], []
- lmk_locs = []
- b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
- for i, input in enumerate(inputs):
- min_size = self.min_sizes[i]
- if use_density_prior_box:
- densities = self.densities[i]
- box, var = fluid.layers.density_prior_box(
- input,
- image,
- densities=densities,
- fixed_sizes=min_size,
- fixed_ratios=[1.],
- clip=False,
- offset=0.5,
- steps=[self.steps[i]] * 2)
- else:
- box, var = fluid.layers.prior_box(
- input,
- image,
- min_sizes=min_size,
- max_sizes=None,
- steps=[self.steps[i]] * 2,
- aspect_ratios=[1.],
- clip=False,
- flip=False,
- offset=0.5)
- num_boxes = box.shape[2]
- box = fluid.layers.reshape(box, shape=[-1, 4])
- var = fluid.layers.reshape(var, shape=[-1, 4])
- num_loc_output = num_boxes * 4
- num_conf_output = num_boxes * num_classes
- # get loc
- mbox_loc = fluid.layers.conv2d(
- input, num_loc_output, 3, 1, 1, bias_attr=b_attr)
- loc = permute_and_reshape(mbox_loc, 4)
- # get conf
- mbox_conf = fluid.layers.conv2d(
- input, num_conf_output, 3, 1, 1, bias_attr=b_attr)
- conf = permute_and_reshape(mbox_conf, num_classes)
- if self.with_lmk:
- # get landmark
- lmk_loc_output = num_boxes * 10
- lmk_box_loc = fluid.layers.conv2d(
- input,
- lmk_loc_output,
- 3,
- 1,
- 1,
- param_attr=ParamAttr(name='lmk' + str(i) + '_weights'),
- bias_attr=False)
- lmk_loc = permute_and_reshape(lmk_box_loc, 10)
- lmk_locs.append(lmk_loc)
- locs.append(loc)
- confs.append(conf)
- boxes.append(box)
- vars.append(var)
- face_mbox_loc = fluid.layers.concat(locs, axis=1)
- face_mbox_conf = fluid.layers.concat(confs, axis=1)
- prior_boxes = fluid.layers.concat(boxes)
- box_vars = fluid.layers.concat(vars)
- if self.with_lmk:
- self.landmark = fluid.layers.concat(lmk_locs, axis=1)
- return face_mbox_loc, face_mbox_conf, prior_boxes, box_vars
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'im_shape': {'shape': [None, 3], 'dtype': 'int32', 'lod_level': 0},
- 'gt_keypoint': {'shape': [None, 10], 'dtype': 'float32', 'lod_level': 1},
- 'keypoint_ignore': {'shape': [None, 1], 'dtype': 'float32', 'lod_level': 1},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=['image', 'im_id', 'gt_bbox', 'gt_class'], # for train
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape)
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars):
- return self.build(feed_vars, 'eval')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
- def is_bbox_normalized(self):
- return True
|