English | 简体中文
For setting up the running environment, please refer to installation instructions.
PaddleDetection provides scripots for training, evalution and inference with various features according to different configure.
# set PYTHONPATH
export PYTHONPATH=$PYTHONPATH:.
# training in single-GPU and multi-GPU. specify different GPU numbers by CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
# GPU evalution
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
# Inference
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
list below can be viewed by --help
FLAG | script supported | description | default | remark |
---|---|---|---|---|
-c | ALL | Select config file | None | The description of configure can refer to CONFIG.md |
-o | ALL | Set parameters in configure file | None | -o has higher priority to file configured by -c . Such as -o use_gpu=False max_iter=10000 |
-r/--resume_checkpoint | train | Checkpoint path for resuming training | None | -r output/faster_rcnn_r50_1x/10000 |
--eval | train | Whether to perform evaluation in training | False | |
--output_eval | train/eval | json path in evalution | current path | --output_eval ./json_result |
--fp16 | train | Whether to enable mixed precision training | False | GPU training is required |
--loss_scale | train | Loss scaling factor for mixed precision training | 8.0 | enable when --fp16 is True |
--json_eval | eval | Whether to evaluate with already existed bbox.json or mask.json | False | json path is set in --output_eval |
--output_dir | infer | Directory for storing the output visualization files | ./output |
--output_dir output |
--draw_threshold | infer | Threshold to reserve the result for visualization | 0.5 | --draw_threshold 0.7 |
--infer_dir | infer | Directory for images to perform inference on | None | |
--infer_img | infer | Image path | None | higher priority over --infer_dir |
--use_vdl | train/infer | Whether to record the data with VisualDL, so as to display in VisualDL | False | VisualDL requires Python>=3.5 |
--vdl_log_dir | train/infer | VisualDL logging directory for image | train:vdl_log_dir/scalar infer: vdl_log_dir/image |
VisualDL requires Python>=3.5 |
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
Perform training and evalution alternatively and evaluate at each snapshot_iter. Meanwhile, the best model with highest MAP is saved at each snapshot_iter
which has the same path as model_final
.
If evaluation dataset is large, we suggest decreasing evaluation times or evaluating after training.
When using pre-trained model to fine-tune other task, pretrain_weights can be used directly. The parameters with different shape will be ignored automatically. For example:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# If the shape of parameters in program is different from pretrain_weights,
# then PaddleDetection will not use such parameters.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o pretrain_weights=output/faster_rcnn_r50_1x/model_final \
Besides, the name of parameters which need to ignore can be specified explicitly as well. Two methods can be used:
finetune_exclude_pretrained_params
in YAML config export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o pretrain_weights=output/faster_rcnn_r50_1x/model_final \
finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
In order to facilitate the redesign of YOLOv3 loss function, we also provide fine grained YOLOv3 loss function building in python code by common Paddle OPs instead of using fluid.layers.yolov3_loss
,
training YOLOv3 with python loss function as follows:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/yolov3_darknet.yml \
-o use_fine_grained_loss=true
Fine grained YOLOv3 loss code is defined in ppdet/modeling/losses/yolo_loss.py
.
CUDA_VISIBLE_DEVICES
can specify different gpu numbers. Such as: export CUDA_VISIBLE_DEVICES=0,1,2,3
. GPU calculation rules can refer FAQ~/.cache/paddle/dataset
if not be found locally.~/.cache/paddle/weights
.output
by default, and can be revised from save_dir in configure files.Mixed precision training can be enabled with --fp16
flag. Currently Faster-FPN, Mask-FPN and Yolov3 have been verified to be working with little to no loss of precision (less than 0.2 mAP)
To speed up mixed precision training, it is recommended to train in multi-process mode, for example
python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.py --fp16 -c configs/faster_rcnn_r50_fpn_1x.yml
If loss becomes NaN
during training, try tweak the --loss_scale
value. Please refer to the Nvidia documentation on mixed precision training for details.
Also, please note mixed precision training currently requires changing norm_type
from affine_channel
to bn
.
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
The path of model to be evaluted can be both local path and link in MODEL_ZOO.
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
--json_eval \
-f evaluation/
The json file must be named bbox.json or mask.json, placed in the evaluation/
directory.
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--output_dir=infer_output/ \
--draw_threshold=0.5 \
-o weights=output/faster_rcnn_r50_1x/model_final \
--use_vdl=Ture
--draw_threshold
is an optional argument. Default is 0.5.
Different thresholds will produce different results depending on the calculation of NMS.
python tools/export_model.py -c configs/faster_rcnn_r50_1x.yml \
--output_dir=inference_model \
-o weights=output/faster_rcnn_r50_1x/model_final \
FasterRCNNTestFeed.image_shape=[3,800,1333]
Save inference model tools/export_model.py
, which can be loaded by PaddlePaddle predict library.