123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <ctime>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include "paddle_api.h" // NOLINT
- #include "include/config_parser.h"
- #include "include/keypoint_postprocess.h"
- #include "include/preprocess_op.h"
- using namespace paddle::lite_api; // NOLINT
- namespace PaddleDetection {
- // Object KeyPoint Result
- struct KeyPointResult {
- // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
- std::vector<float> keypoints;
- int num_joints = -1;
- };
- // Visualiztion KeyPoint Result
- cv::Mat VisualizeKptsResult(const cv::Mat& img,
- const std::vector<KeyPointResult>& results,
- const std::vector<int>& colormap,
- float threshold = 0.2);
- class KeyPointDetector {
- public:
- explicit KeyPointDetector(const std::string& model_dir,
- int cpu_threads = 1,
- const int batch_size = 1,
- bool use_dark = true) {
- config_.load_config(model_dir);
- threshold_ = config_.draw_threshold_;
- use_dark_ = use_dark;
- preprocessor_.Init(config_.preprocess_info_);
- printf("before keypoint detector\n");
- LoadModel(model_dir, cpu_threads);
- printf("create keypoint detector\n");
- }
- // Load Paddle inference model
- void LoadModel(std::string model_file, int num_theads);
- // Run predictor
- void Predict(const std::vector<cv::Mat> imgs,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale,
- const int warmup = 0,
- const int repeats = 1,
- std::vector<KeyPointResult>* result = nullptr,
- std::vector<double>* times = nullptr);
- // Get Model Label list
- const std::vector<std::string>& GetLabelList() const {
- return config_.label_list_;
- }
- bool use_dark(){return this->use_dark_;}
- inline float get_threshold() {return threshold_;};
- private:
- // Preprocess image and copy data to input buffer
- void Preprocess(const cv::Mat& image_mat);
- // Postprocess result
- void Postprocess(std::vector<float>& output,
- std::vector<int64_t>& output_shape,
- std::vector<int64_t>& idxout,
- std::vector<int64_t>& idx_shape,
- std::vector<KeyPointResult>* result,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale);
- std::shared_ptr<PaddlePredictor> predictor_;
- Preprocessor preprocessor_;
- ImageBlob inputs_;
- std::vector<float> output_data_;
- std::vector<int64_t> idx_data_;
- float threshold_;
- ConfigPaser config_;
- bool use_dark_;
- };
- } // namespace PaddleDetection
|