MaochengHu 576cda45b8 first commit | há 2 anos atrás | |
---|---|---|
.. | ||
tools | há 2 anos atrás | |
README.md | há 2 anos atrás | |
README_cn.md | há 2 anos atrás | |
fairmot_dla34_30e_1088x608_pathtrack.yml | há 2 anos atrás | |
fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml | há 2 anos atrás | |
fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.yml | há 2 anos atrás | |
fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.yml | há 2 anos atrás | |
fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.yml | há 2 anos atrás |
English | 简体中文
行人跟踪的主要应用之一是交通监控。
PathTrack包含720个视频序列,有着超过15000个行人的轨迹。包含了街景、舞蹈、体育运动、采访等各种场景的,大部分是移动摄像头拍摄场景。该数据集只有Pedestrian一类标注作为跟踪任务。
VisDrone是无人机视角拍摄的数据集,是以俯视视角为主。该数据集涵盖不同位置(取自中国数千个相距数千公里的14个不同城市)、不同环境(城市和乡村)、不同物体(行人、车辆、自行车等)和不同密度(稀疏和拥挤的场景)。VisDrone2019-MOT包含56个视频序列用于训练,7个视频序列用于验证。此处针对VisDrone2019-MOT多目标跟踪数据集进行提取,抽取出类别为pedestrian和people的数据组合成一个大的Pedestrian类别。
数据集 | 骨干网络 | 输入尺寸 | MOTA | IDF1 | FPS | 下载链接 | 配置文件 |
---|---|---|---|---|---|---|---|
PathTrack | DLA-34 | 1088x608 | 44.9 | 59.3 | - | 下载链接 | 配置文件 |
VisDrone | DLA-34 | 1088x608 | 49.2 | 63.1 | - | 下载链接 | 配置文件 |
VisDrone | HRNetv2-W18 | 1088x608 | 40.5 | 54.7 | - | 下载链接 | 配置文件 |
VisDrone | HRNetv2-W18 | 864x480 | 38.6 | 50.9 | - | 下载链接 | 配置文件 |
VisDrone | HRNetv2-W18 | 576x320 | 30.6 | 47.2 | - | 下载链接 | 配置文件 |
注意:
代码统一都在tools目录下
# visdrone
tools/visdrone/visdrone2mot.py: 生成visdrone_pedestrian据集
# 复制tool/visdrone/visdrone2mot.py到数据集目录下
# 生成visdrone_pedestrian MOT格式的数据,抽取类别classes=1,2 (pedestrian, people)
<<--生成前目录-->>
├── VisDrone2019-MOT-val
│ ├── annotations
│ ├── sequences
│ ├── visdrone2mot.py
<<--生成后目录-->>
├── VisDrone2019-MOT-val
│ ├── annotations
│ ├── sequences
│ ├── visdrone2mot.py
│ ├── visdrone_pedestrian
│ │ ├── images
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── labels_with_ids
│ │ │ ├── train
│ │ │ ├── val
# 执行
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=val
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=train
使用2个GPU通过如下命令一键式启动训练
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_visdrone_pedestrian/ --gpus 0,1 tools/train.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml
使用单张GPU通过如下命令一键式启动评估
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=output/fairmot_dla34_30e_1088x608_visdrone_pedestrian/model_final.pdparams
使用单个GPU通过如下命令预测一个视频,并保存为视频
# 预测一个视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams --video_file={your video name}.mp4 --save_videos
注意:
apt-get update && apt-get install -y ffmpeg
。CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_visdrone_pedestrian --video_file={your video name}.mp4 --device=GPU --save_mot_txts
注意:
--save_mot_txts
表示保存跟踪结果的txt文件,或--save_images
表示保存跟踪结果可视化图片。frame,id,x1,y1,w,h,score,-1,-1,-1
。@article{zhang2020fair,
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={arXiv preprint arXiv:2004.01888},
year={2020}
}
@INPROCEEDINGS{8237302,
author={S. {Manen} and M. {Gygli} and D. {Dai} and L. V. {Gool}},
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
title={PathTrack: Fast Trajectory Annotation with Path Supervision},
year={2017},
volume={},
number={},
pages={290-299},
doi={10.1109/ICCV.2017.40},
ISSN={2380-7504},
month={Oct},}
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3119563}
}