123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import numpy as np
- from PIL import Image
- from paddle import fluid
- import logging
- FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
- logging.basicConfig(level=logging.INFO, format=FORMAT)
- logger = logging.getLogger(__name__)
- try:
- from ppdet.core.workspace import load_config, merge_config, create
- from ppdet.utils.eval_utils import parse_fetches
- from ppdet.utils.cli import ArgsParser
- from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
- from ppdet.utils.visualizer import visualize_results
- import ppdet.utils.checkpoint as checkpoint
- from ppdet.data.reader import create_reader
- from tools.infer import get_test_images, get_save_image_name
- except ImportError as e:
- if sys.argv[0].find('static') >= 0:
- logger.error("Importing ppdet failed when running static model "
- "with error: {}\n"
- "please try:\n"
- "\t1. run static model under PaddleDetection/static "
- "directory\n"
- "\t2. run 'pip uninstall ppdet' to uninstall ppdet "
- "dynamic version firstly.".format(e))
- sys.exit(-1)
- else:
- raise e
- from paddleslim.quant import quant_aware, convert
- def main():
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- check_config(cfg)
- # check if set use_gpu=True in paddlepaddle cpu version
- check_gpu(cfg.use_gpu)
- # check if paddlepaddle version is satisfied
- check_version()
- main_arch = cfg.architecture
- dataset = cfg.TestReader['dataset']
- test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
- dataset.set_images(test_images)
- place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
- exe = fluid.Executor(place)
- model = create(main_arch)
- startup_prog = fluid.Program()
- infer_prog = fluid.Program()
- with fluid.program_guard(infer_prog, startup_prog):
- with fluid.unique_name.guard():
- inputs_def = cfg['TestReader']['inputs_def']
- feed_vars, loader = model.build_inputs(**inputs_def)
- test_fetches = model.test(feed_vars)
- infer_prog = infer_prog.clone(True)
- reader = create_reader(cfg.TestReader)
- # When iterable mode, set set_sample_list_generator(reader, place)
- loader.set_sample_list_generator(reader)
- not_quant_pattern = []
- if FLAGS.not_quant_pattern:
- not_quant_pattern = FLAGS.not_quant_pattern
- config = {
- 'weight_quantize_type': 'channel_wise_abs_max',
- 'activation_quantize_type': 'moving_average_abs_max',
- 'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
- 'not_quant_pattern': not_quant_pattern
- }
- infer_prog = quant_aware(infer_prog, place, config, for_test=True)
- exe.run(startup_prog)
- if cfg.weights:
- checkpoint.load_params(exe, infer_prog, cfg.weights)
- infer_prog = convert(infer_prog, place, config, save_int8=False)
- # parse infer fetches
- assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
- "unknown metric type {}".format(cfg.metric)
- extra_keys = []
- if cfg['metric'] in ['COCO', 'OID']:
- extra_keys = ['im_info', 'im_id', 'im_shape']
- if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
- extra_keys = ['im_id', 'im_shape']
- keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)
- # parse dataset category
- if cfg.metric == 'COCO':
- from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
- if cfg.metric == 'OID':
- from ppdet.utils.oid_eval import bbox2out, get_category_info
- if cfg.metric == "VOC":
- from ppdet.utils.voc_eval import bbox2out, get_category_info
- if cfg.metric == "WIDERFACE":
- from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info
- anno_file = dataset.get_anno()
- with_background = dataset.with_background
- use_default_label = dataset.use_default_label
- clsid2catid, catid2name = get_category_info(anno_file, with_background,
- use_default_label)
- # whether output bbox is normalized in model output layer
- is_bbox_normalized = False
- if hasattr(model, 'is_bbox_normalized') and \
- callable(model.is_bbox_normalized):
- is_bbox_normalized = model.is_bbox_normalized()
- imid2path = dataset.get_imid2path()
- iter_id = 0
- try:
- loader.start()
- while True:
- outs = exe.run(infer_prog, fetch_list=values, return_numpy=False)
- res = {
- k: (np.array(v), v.recursive_sequence_lengths())
- for k, v in zip(keys, outs)
- }
- logger.info('Infer iter {}'.format(iter_id))
- iter_id += 1
- bbox_results = None
- mask_results = None
- if 'bbox' in res:
- bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
- if 'mask' in res:
- mask_results = mask2out([res], clsid2catid,
- model.mask_head.resolution)
- # visualize result
- im_ids = res['im_id'][0]
- for im_id in im_ids:
- image_path = imid2path[int(im_id)]
- image = Image.open(image_path).convert('RGB')
- image = visualize_results(image,
- int(im_id), catid2name,
- FLAGS.draw_threshold, bbox_results,
- mask_results)
- save_name = get_save_image_name(FLAGS.output_dir, image_path)
- logger.info("Detection bbox results save in {}".format(
- save_name))
- image.save(save_name, quality=95)
- except (StopIteration, fluid.core.EOFException):
- loader.reset()
- if __name__ == '__main__':
- enable_static_mode()
- parser = ArgsParser()
- parser.add_argument(
- "--infer_dir",
- type=str,
- default=None,
- help="Directory for images to perform inference on.")
- parser.add_argument(
- "--infer_img",
- type=str,
- default=None,
- help="Image path, has higher priority over --infer_dir")
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output",
- help="Directory for storing the output visualization files.")
- parser.add_argument(
- "--draw_threshold",
- type=float,
- default=0.5,
- help="Threshold to reserve the result for visualization.")
- parser.add_argument(
- "--not_quant_pattern",
- nargs='+',
- type=str,
- help="Layers which name_scope contains string in not_quant_pattern will not be quantized"
- )
- FLAGS = parser.parse_args()
- main()
|