yolox_nano_300e_coco.yml 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. './_base_/optimizer_300e.yml',
  5. './_base_/yolox_cspdarknet.yml',
  6. './_base_/yolox_reader.yml'
  7. ]
  8. depth_mult: 0.33
  9. width_mult: 0.25
  10. log_iter: 100
  11. snapshot_epoch: 10
  12. weights: output/yolox_nano_300e_coco/model_final
  13. ### model config:
  14. # Note: YOLOX-nano use depthwise conv in backbone, neck and head.
  15. YOLOX:
  16. backbone: CSPDarkNet
  17. neck: YOLOCSPPAN
  18. head: YOLOXHead
  19. size_stride: 32
  20. size_range: [10, 20] # multi-scale range [320*320 ~ 640*640]
  21. CSPDarkNet:
  22. arch: "X"
  23. return_idx: [2, 3, 4]
  24. depthwise: True
  25. YOLOCSPPAN:
  26. depthwise: True
  27. YOLOXHead:
  28. depthwise: True
  29. ### reader config:
  30. # Note: YOLOX-tiny/nano uses 416*416 for evaluation and inference.
  31. # And multi-scale training setting is in model config, TrainReader's operators use 640*640 as default.
  32. worker_num: 4
  33. TrainReader:
  34. sample_transforms:
  35. - Decode: {}
  36. - Mosaic:
  37. prob: 0.5 # 1.0 in YOLOX-tiny/s/m/l/x
  38. input_dim: [640, 640]
  39. degrees: [-10, 10]
  40. scale: [0.5, 1.5] # [0.1, 2.0] in YOLOX-s/m/l/x
  41. shear: [-2, 2]
  42. translate: [-0.1, 0.1]
  43. enable_mixup: False # True in YOLOX-s/m/l/x
  44. - AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30}
  45. - PadResize: {target_size: 640}
  46. - RandomFlip: {}
  47. batch_transforms:
  48. - Permute: {}
  49. batch_size: 8
  50. shuffle: True
  51. drop_last: True
  52. collate_batch: False
  53. mosaic_epoch: 285
  54. EvalReader:
  55. sample_transforms:
  56. - Decode: {}
  57. - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
  58. - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
  59. - Permute: {}
  60. batch_size: 8
  61. TestReader:
  62. inputs_def:
  63. image_shape: [3, 416, 416]
  64. sample_transforms:
  65. - Decode: {}
  66. - Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
  67. - Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
  68. - Permute: {}
  69. batch_size: 1