123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- from collections import deque
- import torch
- import numpy as np
- from utils.kalman_filter import KalmanFilter
- from dev.utils.log import logger
- from models import *
- from tracker import matching
- from .basetrack import BaseTrack, TrackState
- class STrack(BaseTrack):
- def __init__(self, tlwh, score, temp_feat, buffer_size=30):
- # wait activate
- self._tlwh = np.asarray(tlwh, dtype=np.float)
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
- self.score = score
- self.tracklet_len = 0
- self.smooth_feat = None
- self.update_features(temp_feat)
- self.features = deque([], maxlen=buffer_size)
- self.alpha = 0.9
-
- def update_features(self, feat):
- feat /= np.linalg.norm(feat)
- self.curr_feat = feat
- if self.smooth_feat is None:
- self.smooth_feat = feat
- else:
- self.smooth_feat = self.alpha *self.smooth_feat + (1-self.alpha) * feat
- self.features.append(feat)
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
- def predict(self):
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
-
- @staticmethod
- def multi_predict(stracks, kalman_filter):
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- # multi_mean, multi_covariance = STrack.kalman_filter.multi_predict(multi_mean, multi_covariance)
- multi_mean, multi_covariance = kalman_filter.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def activate(self, kalman_filter, frame_id):
- """Start a new tracklet"""
- self.kalman_filter = kalman_filter
- self.track_id = self.next_id()
- self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- #self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- def re_activate(self, new_track, frame_id, new_id=False):
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
- )
- self.update_features(new_track.curr_feat)
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id:
- self.track_id = self.next_id()
- def update(self, new_track, frame_id, update_feature=True):
- """
- Update a matched track
- :type new_track: STrack
- :type frame_id: int
- :type update_feature: bool
- :return:
- """
- self.frame_id = frame_id
- self.tracklet_len += 1
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
- self.state = TrackState.Tracked
- self.is_activated = True
- self.score = new_track.score
- if update_feature:
- self.update_features(new_track.curr_feat)
- @property
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
- @property
- def tlbr(self):
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
- `(top left, bottom right)`.
- """
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
- @staticmethod
- def tlwh_to_xyah(tlwh):
- """Convert bounding box to format `(center x, center y, aspect ratio,
- height)`, where the aspect ratio is `width / height`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
- def to_xyah(self):
- return self.tlwh_to_xyah(self.tlwh)
- @staticmethod
- def tlbr_to_tlwh(tlbr):
- ret = np.asarray(tlbr).copy()
- ret[2:] -= ret[:2]
- return ret
- @staticmethod
- def tlwh_to_tlbr(tlwh):
- ret = np.asarray(tlwh).copy()
- ret[2:] += ret[:2]
- return ret
- def __repr__(self):
- return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
- class JDETracker(object):
- def __init__(self, opt, frame_rate=30):
- self.opt = opt
- self.model = Darknet(opt.cfg, nID=14455)
- # load_darknet_weights(self.model, opt.weights)
- self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'], strict=False)
- self.model.cuda().eval()
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
- self.frame_id = 0
- self.det_thresh = opt.conf_thres
- self.init_thresh = self.det_thresh + 0.2
- self.low_thresh = 0.4
- self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
- self.max_time_lost = self.buffer_size
- self.kalman_filter = KalmanFilter()
- def update(self, im_blob, img0):
- """
- Processes the image frame and finds bounding box(detections).
- Associates the detection with corresponding tracklets and also handles lost, removed, refound and active tracklets
- Parameters
- ----------
- im_blob : torch.float32
- Tensor of shape depending upon the size of image. By default, shape of this tensor is [1, 3, 608, 1088]
- img0 : ndarray
- ndarray of shape depending on the input image sequence. By default, shape is [608, 1080, 3]
- Returns
- -------
- output_stracks : list of Strack(instances)
- The list contains information regarding the online_tracklets for the recieved image tensor.
- """
- self.frame_id += 1
- activated_starcks = [] # for storing active tracks, for the current frame
- refind_stracks = [] # Lost Tracks whose detections are obtained in the current frame
- lost_stracks = [] # The tracks which are not obtained in the current frame but are not removed.(Lost for some time lesser than the threshold for removing)
- removed_stracks = []
- t1 = time.time()
- ''' Step 1: Network forward, get detections & embeddings'''
- with torch.no_grad():
- pred = self.model(im_blob)
- # pred is tensor of all the proposals (default number of proposals: 54264). Proposals have information associated with the bounding box and embeddings
- pred = pred[pred[:, :, 4] > self.low_thresh]
- # pred now has lesser number of proposals. Proposals rejected on basis of object confidence score
- if len(pred) > 0:
- dets = non_max_suppression(pred.unsqueeze(0), self.low_thresh, self.opt.nms_thres)[0].cpu()
- # Final proposals are obtained in dets. Information of bounding box and embeddings also included
- # Next step changes the detection scales
- scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
- '''Detections is list of (x1, y1, x2, y2, object_conf, class_score, class_pred)'''
- # class_pred is the embeddings.
- dets = dets.numpy()
- remain_inds = dets[:, 4] > self.det_thresh
- inds_low = dets[:, 4] > self.low_thresh
- inds_high = dets[:, 4] < self.det_thresh
- inds_second = np.logical_and(inds_low, inds_high)
- dets_second = dets[inds_second]
- dets = dets[remain_inds]
- detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets[:, :5], dets[:, 6:])]
- else:
- detections = []
- dets_second = []
- t2 = time.time()
- # print('Forward: {} s'.format(t2-t1))
- ''' Add newly detected tracklets to tracked_stracks'''
- unconfirmed = []
- tracked_stracks = [] # type: list[STrack]
- for track in self.tracked_stracks:
- if not track.is_activated:
- # previous tracks which are not active in the current frame are added in unconfirmed list
- unconfirmed.append(track)
- # print("Should not be here, in unconfirmed")
- else:
- # Active tracks are added to the local list 'tracked_stracks'
- tracked_stracks.append(track)
- ''' Step 2: First association, with embedding'''
- # Combining currently tracked_stracks and lost_stracks
- strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
- # Predict the current location with KF
- STrack.multi_predict(strack_pool, self.kalman_filter)
- dists = matching.embedding_distance(strack_pool, detections)
- dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
- #dists = matching.iou_distance(strack_pool, detections)
- # The dists is the list of distances of the detection with the tracks in strack_pool
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.7)
- # The matches is the array for corresponding matches of the detection with the corresponding strack_pool
- for itracked, idet in matches:
- # itracked is the id of the track and idet is the detection
- track = strack_pool[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- # If the track is active, add the detection to the track
- track.update(detections[idet], self.frame_id)
- activated_starcks.append(track)
- else:
- # We have obtained a detection from a track which is not active, hence put the track in refind_stracks list
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # None of the steps below happen if there are no undetected tracks.
- ''' Step 3: Second association, with IOU'''
- detections = [detections[i] for i in u_detection]
- # detections is now a list of the unmatched detections
- r_tracked_stracks = [] # This is container for stracks which were tracked till the
- # previous frame but no detection was found for it in the current frame
- for i in u_track:
- if strack_pool[i].state == TrackState.Tracked:
- r_tracked_stracks.append(strack_pool[i])
- dists = matching.iou_distance(r_tracked_stracks, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
- # matches is the list of detections which matched with corresponding tracks by IOU distance method
- for itracked, idet in matches:
- track = r_tracked_stracks[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- # Same process done for some unmatched detections, but now considering IOU_distance as measure
- # association the untrack to the low score detections
- if len(dets_second) > 0:
- detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets_second[:, :5], dets_second[:, 6:])]
- else:
- detections_second = []
- second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
- dists = matching.iou_distance(second_tracked_stracks, detections_second)
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4)
- for itracked, idet in matches:
- track = second_tracked_stracks[itracked]
- det = detections_second[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
- for it in u_track:
- track = second_tracked_stracks[it]
- if not track.state == TrackState.Lost:
- track.mark_lost()
- lost_stracks.append(track)
- # If no detections are obtained for tracks (u_track), the tracks are added to lost_tracks list and are marked lost
- '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
- detections = [detections[i] for i in u_detection]
- dists = matching.iou_distance(unconfirmed, detections)
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
- for itracked, idet in matches:
- unconfirmed[itracked].update(detections[idet], self.frame_id)
- activated_starcks.append(unconfirmed[itracked])
- # The tracks which are yet not matched
- for it in u_unconfirmed:
- track = unconfirmed[it]
- track.mark_removed()
- removed_stracks.append(track)
- # after all these confirmation steps, if a new detection is found, it is initialized for a new track
- """ Step 4: Init new stracks"""
- for inew in u_detection:
- track = detections[inew]
- if track.score < self.init_thresh:
- continue
- track.activate(self.kalman_filter, self.frame_id)
- activated_starcks.append(track)
- """ Step 5: Update state"""
- # If the tracks are lost for more frames than the threshold number, the tracks are removed.
- for track in self.lost_stracks:
- if self.frame_id - track.end_frame > self.max_time_lost:
- track.mark_removed()
- removed_stracks.append(track)
- # print('Remained match {} s'.format(t4-t3))
- # Update the self.tracked_stracks and self.lost_stracks using the updates in this step.
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
- self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
- self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
- # self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack]
- self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
- self.lost_stracks.extend(lost_stracks)
- self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
- self.removed_stracks.extend(removed_stracks)
- self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
- # get scores of lost tracks
- output_stracks = [track for track in self.tracked_stracks if track.is_activated]
- logger.debug('===========Frame {}=========='.format(self.frame_id))
- logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
- logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
- logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
- logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
- # print('Final {} s'.format(t5-t4))
- return output_stracks
- def joint_stracks(tlista, tlistb):
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
- def sub_stracks(tlista, tlistb):
- stracks = {}
- for t in tlista:
- stracks[t.track_id] = t
- for t in tlistb:
- tid = t.track_id
- if stracks.get(tid, 0):
- del stracks[tid]
- return list(stracks.values())
- def remove_duplicate_stracks(stracksa, stracksb):
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist<0.15)
- dupa, dupb = list(), list()
- for p,q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i,t in enumerate(stracksa) if not i in dupa]
- resb = [t for i,t in enumerate(stracksb) if not i in dupb]
- return resa, resb
-
|