123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import sys
- import numpy as np
- import logging
- logger = logging.getLogger(__name__)
- __all__ = ['bbox_area', 'jaccard_overlap', 'DetectionMAP']
- def bbox_area(bbox, is_bbox_normalized):
- """
- Calculate area of a bounding box
- """
- norm = 1. - float(is_bbox_normalized)
- width = bbox[2] - bbox[0] + norm
- height = bbox[3] - bbox[1] + norm
- return width * height
- def jaccard_overlap(pred, gt, is_bbox_normalized=False):
- """
- Calculate jaccard overlap ratio between two bounding box
- """
- if pred[0] >= gt[2] or pred[2] <= gt[0] or \
- pred[1] >= gt[3] or pred[3] <= gt[1]:
- return 0.
- inter_xmin = max(pred[0], gt[0])
- inter_ymin = max(pred[1], gt[1])
- inter_xmax = min(pred[2], gt[2])
- inter_ymax = min(pred[3], gt[3])
- inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
- is_bbox_normalized)
- pred_size = bbox_area(pred, is_bbox_normalized)
- gt_size = bbox_area(gt, is_bbox_normalized)
- overlap = float(inter_size) / (pred_size + gt_size - inter_size)
- return overlap
- class DetectionMAP(object):
- """
- Calculate detection mean average precision.
- Currently support two types: 11point and integral
- Args:
- class_num (int): the class number.
- overlap_thresh (float): The threshold of overlap
- ratio between prediction bounding box and
- ground truth bounding box for deciding
- true/false positive. Default 0.5.
- map_type (str): calculation method of mean average
- precision, currently support '11point' and
- 'integral'. Default '11point'.
- is_bbox_normalized (bool): whther bounding boxes
- is normalized to range[0, 1]. Default False.
- evaluate_difficult (bool): whether to evaluate
- difficult bounding boxes. Default False.
- """
- def __init__(self,
- class_num,
- overlap_thresh=0.5,
- map_type='11point',
- is_bbox_normalized=False,
- evaluate_difficult=False):
- self.class_num = class_num
- self.overlap_thresh = overlap_thresh
- assert map_type in ['11point', 'integral'], \
- "map_type currently only support '11point' "\
- "and 'integral'"
- self.map_type = map_type
- self.is_bbox_normalized = is_bbox_normalized
- self.evaluate_difficult = evaluate_difficult
- self.reset()
- def update(self, bbox, gt_box, gt_label, difficult=None):
- """
- Update metric statics from given prediction and ground
- truth infomations.
- """
- if difficult is None:
- difficult = np.zeros_like(gt_label)
- # record class gt count
- for gtl, diff in zip(gt_label, difficult):
- if self.evaluate_difficult or int(diff) == 0:
- self.class_gt_counts[int(np.array(gtl))] += 1
- # record class score positive
- visited = [False] * len(gt_label)
- for b in bbox:
- label, score, xmin, ymin, xmax, ymax = b.tolist()
- pred = [xmin, ymin, xmax, ymax]
- max_idx = -1
- max_overlap = -1.0
- for i, gl in enumerate(gt_label):
- if int(gl) == int(label):
- overlap = jaccard_overlap(pred, gt_box[i],
- self.is_bbox_normalized)
- if overlap > max_overlap:
- max_overlap = overlap
- max_idx = i
- if max_overlap > self.overlap_thresh:
- if self.evaluate_difficult or \
- int(np.array(difficult[max_idx])) == 0:
- if not visited[max_idx]:
- self.class_score_poss[int(label)].append([score, 1.0])
- visited[max_idx] = True
- else:
- self.class_score_poss[int(label)].append([score, 0.0])
- else:
- self.class_score_poss[int(label)].append([score, 0.0])
- def reset(self):
- """
- Reset metric statics
- """
- self.class_score_poss = [[] for _ in range(self.class_num)]
- self.class_gt_counts = [0] * self.class_num
- self.mAP = None
- def accumulate(self):
- """
- Accumulate metric results and calculate mAP
- """
- mAP = 0.
- valid_cnt = 0
- for score_pos, count in zip(self.class_score_poss,
- self.class_gt_counts):
- if count == 0: continue
- if len(score_pos) == 0:
- valid_cnt += 1
- continue
- accum_tp_list, accum_fp_list = \
- self._get_tp_fp_accum(score_pos)
- precision = []
- recall = []
- for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
- precision.append(float(ac_tp) / (ac_tp + ac_fp))
- recall.append(float(ac_tp) / count)
- if self.map_type == '11point':
- max_precisions = [0.] * 11
- start_idx = len(precision) - 1
- for j in range(10, -1, -1):
- for i in range(start_idx, -1, -1):
- if recall[i] < float(j) / 10.:
- start_idx = i
- if j > 0:
- max_precisions[j - 1] = max_precisions[j]
- break
- else:
- if max_precisions[j] < precision[i]:
- max_precisions[j] = precision[i]
- mAP += sum(max_precisions) / 11.
- valid_cnt += 1
- elif self.map_type == 'integral':
- import math
- ap = 0.
- prev_recall = 0.
- for i in range(len(precision)):
- recall_gap = math.fabs(recall[i] - prev_recall)
- if recall_gap > 1e-6:
- ap += precision[i] * recall_gap
- prev_recall = recall[i]
- mAP += ap
- valid_cnt += 1
- else:
- logger.error("Unspported mAP type {}".format(self.map_type))
- sys.exit(1)
- self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
- def get_map(self):
- """
- Get mAP result
- """
- if self.mAP is None:
- logger.error("mAP is not calculated.")
- return self.mAP
- def _get_tp_fp_accum(self, score_pos_list):
- """
- Calculate accumulating true/false positive results from
- [score, pos] records
- """
- sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
- accum_tp = 0
- accum_fp = 0
- accum_tp_list = []
- accum_fp_list = []
- for (score, pos) in sorted_list:
- accum_tp += int(pos)
- accum_tp_list.append(accum_tp)
- accum_fp += 1 - int(pos)
- accum_fp_list.append(accum_fp)
- return accum_tp_list, accum_fp_list
|