123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.regularizer import L2Decay
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- __all__ = ['MobileNet']
- @register
- class MobileNet(object):
- """
- MobileNet v1, see https://arxiv.org/abs/1704.04861
- Args:
- norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
- norm_decay (float): weight decay for normalization layer weights
- conv_decay (float): weight decay for convolution layer weights.
- conv_group_scale (int): scaling factor for convolution groups
- with_extra_blocks (bool): if extra blocks should be added
- extra_block_filters (list): number of filter for each extra block
- """
- __shared__ = ['norm_type', 'weight_prefix_name']
- def __init__(self,
- norm_type='bn',
- norm_decay=0.,
- conv_decay=0.,
- conv_group_scale=1,
- conv_learning_rate=1.0,
- with_extra_blocks=False,
- extra_block_filters=[[256, 512], [128, 256], [128, 256],
- [64, 128]],
- weight_prefix_name=''):
- self.norm_type = norm_type
- self.norm_decay = norm_decay
- self.conv_decay = conv_decay
- self.conv_group_scale = conv_group_scale
- self.conv_learning_rate = conv_learning_rate
- self.with_extra_blocks = with_extra_blocks
- self.extra_block_filters = extra_block_filters
- self.prefix_name = weight_prefix_name
- def _conv_norm(self,
- input,
- filter_size,
- num_filters,
- stride,
- padding,
- num_groups=1,
- act='relu',
- use_cudnn=True,
- name=None):
- parameter_attr = ParamAttr(
- learning_rate=self.conv_learning_rate,
- initializer=fluid.initializer.MSRA(),
- regularizer=L2Decay(self.conv_decay),
- name=name + "_weights")
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- act=None,
- use_cudnn=use_cudnn,
- param_attr=parameter_attr,
- bias_attr=False)
- bn_name = name + "_bn"
- norm_decay = self.norm_decay
- bn_param_attr = ParamAttr(
- regularizer=L2Decay(norm_decay), name=bn_name + '_scale')
- bn_bias_attr = ParamAttr(
- regularizer=L2Decay(norm_decay), name=bn_name + '_offset')
- return fluid.layers.batch_norm(
- input=conv,
- act=act,
- param_attr=bn_param_attr,
- bias_attr=bn_bias_attr,
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- def depthwise_separable(self,
- input,
- num_filters1,
- num_filters2,
- num_groups,
- stride,
- scale,
- name=None):
- mixed_precision_enabled = mixed_precision_global_state() is not None
- depthwise_conv = self._conv_norm(
- input=input,
- filter_size=3,
- num_filters=int(num_filters1 * scale),
- stride=stride,
- padding=1,
- num_groups=int(num_groups * scale),
- use_cudnn=mixed_precision_enabled,
- name=name + "_dw")
- pointwise_conv = self._conv_norm(
- input=depthwise_conv,
- filter_size=1,
- num_filters=int(num_filters2 * scale),
- stride=1,
- padding=0,
- name=name + "_sep")
- return pointwise_conv
- def _extra_block(self,
- input,
- num_filters1,
- num_filters2,
- num_groups,
- stride,
- name=None):
- pointwise_conv = self._conv_norm(
- input=input,
- filter_size=1,
- num_filters=int(num_filters1),
- stride=1,
- num_groups=int(num_groups),
- padding=0,
- act='relu6',
- name=name + "_extra1")
- normal_conv = self._conv_norm(
- input=pointwise_conv,
- filter_size=3,
- num_filters=int(num_filters2),
- stride=2,
- num_groups=int(num_groups),
- padding=1,
- act='relu6',
- name=name + "_extra2")
- return normal_conv
- def __call__(self, input):
- scale = self.conv_group_scale
- blocks = []
- # input 1/1
- out = self._conv_norm(
- input, 3, int(32 * scale), 2, 1, name=self.prefix_name + "conv1")
- # 1/2
- out = self.depthwise_separable(
- out, 32, 64, 32, 1, scale, name=self.prefix_name + "conv2_1")
- out = self.depthwise_separable(
- out, 64, 128, 64, 2, scale, name=self.prefix_name + "conv2_2")
- # 1/4
- out = self.depthwise_separable(
- out, 128, 128, 128, 1, scale, name=self.prefix_name + "conv3_1")
- out = self.depthwise_separable(
- out, 128, 256, 128, 2, scale, name=self.prefix_name + "conv3_2")
- # 1/8
- blocks.append(out)
- out = self.depthwise_separable(
- out, 256, 256, 256, 1, scale, name=self.prefix_name + "conv4_1")
- out = self.depthwise_separable(
- out, 256, 512, 256, 2, scale, name=self.prefix_name + "conv4_2")
- # 1/16
- blocks.append(out)
- for i in range(5):
- out = self.depthwise_separable(
- out,
- 512,
- 512,
- 512,
- 1,
- scale,
- name=self.prefix_name + "conv5_" + str(i + 1))
- module11 = out
- out = self.depthwise_separable(
- out, 512, 1024, 512, 2, scale, name=self.prefix_name + "conv5_6")
- # 1/32
- out = self.depthwise_separable(
- out, 1024, 1024, 1024, 1, scale, name=self.prefix_name + "conv6")
- module13 = out
- blocks.append(out)
- if not self.with_extra_blocks:
- return blocks
- num_filters = self.extra_block_filters
- module14 = self._extra_block(module13, num_filters[0][0],
- num_filters[0][1], 1, 2,
- self.prefix_name + "conv7_1")
- module15 = self._extra_block(module14, num_filters[1][0],
- num_filters[1][1], 1, 2,
- self.prefix_name + "conv7_2")
- module16 = self._extra_block(module15, num_filters[2][0],
- num_filters[2][1], 1, 2,
- self.prefix_name + "conv7_3")
- module17 = self._extra_block(module16, num_filters[3][0],
- num_filters[3][1], 1, 2,
- self.prefix_name + "conv7_4")
- return module11, module13, module14, module15, module16, module17
|