123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from ppdet.core.workspace import register
- __all__ = ['HRFPN']
- @register
- class HRFPN(object):
- """
- HRNet, see https://arxiv.org/abs/1908.07919
- Args:
- num_chan (int): number of feature channels
- pooling_type (str): pooling type of downsampling
- share_conv (bool): whethet to share conv for different layers' reduction
- spatial_scale (list): feature map scaling factor
- """
- def __init__(
- self,
- num_chan=256,
- pooling_type="avg",
- share_conv=False,
- spatial_scale=[1. / 64, 1. / 32, 1. / 16, 1. / 8, 1. / 4], ):
- self.num_chan = num_chan
- self.pooling_type = pooling_type
- self.share_conv = share_conv
- self.spatial_scale = spatial_scale
- return
- def get_output(self, body_dict):
- num_out = len(self.spatial_scale)
- body_name_list = list(body_dict.keys())
- num_backbone_stages = len(body_name_list)
- outs = []
- outs.append(body_dict[body_name_list[0]])
- # resize
- for i in range(1, len(body_dict)):
- resized = self.resize_input_tensor(body_dict[body_name_list[i]],
- outs[0], 2**i)
- outs.append(resized)
- # concat
- out = fluid.layers.concat(outs, axis=1)
- # reduction
- out = fluid.layers.conv2d(
- input=out,
- num_filters=self.num_chan,
- filter_size=1,
- stride=1,
- padding=0,
- param_attr=ParamAttr(name='hrfpn_reduction_weights'),
- bias_attr=False)
- # conv
- outs = [out]
- for i in range(1, num_out):
- outs.append(
- self.pooling(
- out, size=2**i, stride=2**i,
- pooling_type=self.pooling_type))
- outputs = []
- for i in range(num_out):
- conv_name = "shared_fpn_conv" if self.share_conv else "shared_fpn_conv_" + str(
- i)
- conv = fluid.layers.conv2d(
- input=outs[i],
- num_filters=self.num_chan,
- filter_size=3,
- stride=1,
- padding=1,
- param_attr=ParamAttr(name=conv_name + "_weights"),
- bias_attr=False)
- outputs.append(conv)
- for idx in range(0, num_out - len(body_name_list)):
- body_name_list.append("fpn_res5_sum_subsampled_{}x".format(2**(idx +
- 1)))
- outputs = outputs[::-1]
- body_name_list = body_name_list[::-1]
- res_dict = OrderedDict([(body_name_list[k], outputs[k])
- for k in range(len(body_name_list))])
- return res_dict, self.spatial_scale
- def resize_input_tensor(self, body_input, ref_output, scale):
- shape = fluid.layers.shape(ref_output)
- shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
- out_shape_ = shape_hw
- out_shape = fluid.layers.cast(out_shape_, dtype='int32')
- out_shape.stop_gradient = True
- body_output = fluid.layers.resize_bilinear(
- body_input, scale=scale, out_shape=out_shape)
- return body_output
- def pooling(self, input, size, stride, pooling_type):
- pool = fluid.layers.pool2d(
- input=input,
- pool_size=size,
- pool_stride=stride,
- pool_type=pooling_type)
- return pool
|