123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import copy
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.initializer import Xavier
- from paddle.fluid.regularizer import L2Decay
- from ppdet.core.workspace import register
- from ppdet.modeling.ops import ConvNorm
- __all__ = ['FPN']
- @register
- class FPN(object):
- """
- Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
- Args:
- num_chan (int): number of feature channels
- min_level (int): lowest level of the backbone feature map to use
- max_level (int): highest level of the backbone feature map to use
- spatial_scale (list): feature map scaling factor
- has_extra_convs (bool): whether has extral convolutions in higher levels
- norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
- norm_decay (float): weight decay for normalization layer weights.
- reverse_out (bool): whether to flip the output.
- """
- __shared__ = ['norm_type', 'freeze_norm']
- def __init__(self,
- num_chan=256,
- min_level=2,
- max_level=6,
- spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
- has_extra_convs=False,
- norm_type=None,
- norm_decay=0.,
- freeze_norm=False,
- use_c5=True,
- reverse_out=False):
- self.freeze_norm = freeze_norm
- self.num_chan = num_chan
- self.min_level = min_level
- self.max_level = max_level
- self.spatial_scale = spatial_scale
- self.has_extra_convs = has_extra_convs
- self.norm_type = norm_type
- self.norm_decay = norm_decay
- self.use_c5 = use_c5
- self.reverse_out = reverse_out
- def _add_topdown_lateral(self, body_name, body_input, upper_output):
- lateral_name = 'fpn_inner_' + body_name + '_lateral'
- topdown_name = 'fpn_topdown_' + body_name
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- lateral = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- name=lateral_name,
- norm_name=lateral_name)
- else:
- lateral = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=lateral_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=lateral_name)
- if body_input.shape[2] == -1 and body_input.shape[3] == -1:
- topdown = fluid.layers.resize_nearest(
- upper_output, scale=2., name=topdown_name)
- else:
- topdown = fluid.layers.resize_nearest(
- upper_output,
- out_shape=[body_input.shape[2], body_input.shape[3]],
- name=topdown_name)
- return fluid.layers.elementwise_add(lateral, topdown)
- def get_output(self, body_dict):
- """
- Add FPN onto backbone.
- Args:
- body_dict(OrderedDict): Dictionary of variables and each element is the
- output of backbone.
- Return:
- fpn_dict(OrderedDict): A dictionary represents the output of FPN with
- their name.
- spatial_scale(list): A list of multiplicative spatial scale factor.
- """
- spatial_scale = copy.deepcopy(self.spatial_scale)
- body_name_list = list(body_dict.keys())[::-1]
- num_backbone_stages = len(body_name_list)
- self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
- fpn_inner_name = 'fpn_inner_' + body_name_list[0]
- body_input = body_dict[body_name_list[0]]
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- self.fpn_inner_output[0] = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- name=fpn_inner_name,
- norm_name=fpn_inner_name)
- else:
- self.fpn_inner_output[0] = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=fpn_inner_name + "_w",
- initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_inner_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_inner_name)
- for i in range(1, num_backbone_stages):
- body_name = body_name_list[i]
- body_input = body_dict[body_name]
- top_output = self.fpn_inner_output[i - 1]
- fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
- top_output)
- self.fpn_inner_output[i] = fpn_inner_single
- fpn_dict = {}
- fpn_name_list = []
- for i in range(num_backbone_stages):
- fpn_name = 'fpn_' + body_name_list[i]
- fan = self.fpn_inner_output[i].shape[1] * 3 * 3
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- fpn_output = ConvNorm(
- self.fpn_inner_output[i],
- self.num_chan,
- 3,
- initializer=initializer,
- norm_type=self.norm_type,
- norm_decay=self.norm_decay,
- freeze_norm=self.freeze_norm,
- name=fpn_name,
- norm_name=fpn_name)
- else:
- fpn_output = fluid.layers.conv2d(
- self.fpn_inner_output[i],
- self.num_chan,
- filter_size=3,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_output
- fpn_name_list.append(fpn_name)
- if not self.has_extra_convs and self.max_level - self.min_level == len(
- spatial_scale):
- body_top_name = fpn_name_list[0]
- body_top_extension = fluid.layers.pool2d(
- fpn_dict[body_top_name],
- 1,
- 'max',
- pool_stride=2,
- name=body_top_name + '_subsampled_2x')
- fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
- fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- # Coarser FPN levels introduced for RetinaNet
- highest_backbone_level = self.min_level + len(spatial_scale) - 1
- if self.has_extra_convs and self.max_level > highest_backbone_level:
- if self.use_c5:
- fpn_blob = body_dict[body_name_list[0]]
- else:
- fpn_blob = fpn_dict[fpn_name_list[0]]
- for i in range(highest_backbone_level + 1, self.max_level + 1):
- fpn_blob_in = fpn_blob
- fpn_name = 'fpn_' + str(i)
- if i > highest_backbone_level + 1:
- fpn_blob_in = fluid.layers.relu(fpn_blob)
- fan = fpn_blob_in.shape[1] * 3 * 3
- fpn_blob = fluid.layers.conv2d(
- input=fpn_blob_in,
- num_filters=self.num_chan,
- filter_size=3,
- stride=2,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_blob
- fpn_name_list.insert(0, fpn_name)
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- if self.reverse_out:
- fpn_name_list = fpn_name_list[::-1]
- res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
- return res_dict, spatial_scale
|