123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import copy
- from paddle import fluid
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.initializer import Xavier
- from paddle.fluid.regularizer import L2Decay
- from ppdet.core.workspace import register
- from ppdet.modeling.ops import ConvNorm
- __all__ = ['ACFPN']
- @register
- class ACFPN(object):
- """
- Attention-guided Context Feature Pyramid Network for Object Detection,
- see https://arxiv.org/abs/2005.11475
- Args:
- num_chan (int): number of feature channels
- min_level (int): lowest level of the backbone feature map to use
- max_level (int): highest level of the backbone feature map to use
- spatial_scale (list): feature map scaling factor
- has_extra_convs (bool): whether has extral convolutions in higher levels
- norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
- use_c5 (bool): whether to use C5 as the feature map.
- norm_groups (int): group number of group norm.
- """
- __shared__ = ['norm_type', 'freeze_norm']
- def __init__(self,
- num_chan=256,
- min_level=2,
- max_level=6,
- spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
- has_extra_convs=False,
- norm_type=None,
- freeze_norm=False,
- use_c5=True,
- norm_groups=32):
- self.freeze_norm = freeze_norm
- self.num_chan = num_chan
- self.min_level = min_level
- self.max_level = max_level
- self.spatial_scale = spatial_scale
- self.has_extra_convs = has_extra_convs
- self.norm_type = norm_type
- self.use_c5 = use_c5
- self.norm_groups = norm_groups
- def _add_topdown_lateral(self, body_name, body_input, upper_output):
- lateral_name = 'fpn_inner_' + body_name + '_lateral'
- topdown_name = 'fpn_topdown_' + body_name
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- lateral = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=lateral_name,
- norm_name=lateral_name)
- else:
- lateral = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=lateral_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=lateral_name)
- topdown = fluid.layers.resize_nearest(
- upper_output, scale=2., name=topdown_name)
- return lateral + topdown
- def dense_aspp_block(self, input, num_filters1, num_filters2, dilation_rate,
- dropout_prob, name):
- conv = ConvNorm(
- input,
- num_filters=num_filters1,
- filter_size=1,
- stride=1,
- groups=1,
- norm_decay=0.,
- norm_type='gn',
- norm_groups=self.norm_groups,
- dilation=dilation_rate,
- lr_scale=1,
- freeze_norm=False,
- act="relu",
- norm_name=name + "_gn",
- initializer=None,
- bias_attr=False,
- name=name + "_gn")
- conv = fluid.layers.conv2d(
- conv,
- num_filters2,
- filter_size=3,
- padding=dilation_rate,
- dilation=dilation_rate,
- act="relu",
- param_attr=ParamAttr(name=name + "_conv_w"),
- bias_attr=ParamAttr(name=name + "_conv_b"), )
- if dropout_prob > 0:
- conv = fluid.layers.dropout(conv, dropout_prob=dropout_prob)
- return conv
- def dense_aspp(self, input, name=None):
- dropout0 = 0.1
- d_feature0 = 512
- d_feature1 = 256
- aspp3 = self.dense_aspp_block(
- input,
- num_filters1=d_feature0,
- num_filters2=d_feature1,
- dropout_prob=dropout0,
- name=name + '_aspp3',
- dilation_rate=3)
- conv = fluid.layers.concat([aspp3, input], axis=1)
- aspp6 = self.dense_aspp_block(
- conv,
- num_filters1=d_feature0,
- num_filters2=d_feature1,
- dropout_prob=dropout0,
- name=name + '_aspp6',
- dilation_rate=6)
- conv = fluid.layers.concat([aspp6, conv], axis=1)
- aspp12 = self.dense_aspp_block(
- conv,
- num_filters1=d_feature0,
- num_filters2=d_feature1,
- dropout_prob=dropout0,
- name=name + '_aspp12',
- dilation_rate=12)
- conv = fluid.layers.concat([aspp12, conv], axis=1)
- aspp18 = self.dense_aspp_block(
- conv,
- num_filters1=d_feature0,
- num_filters2=d_feature1,
- dropout_prob=dropout0,
- name=name + '_aspp18',
- dilation_rate=18)
- conv = fluid.layers.concat([aspp18, conv], axis=1)
- aspp24 = self.dense_aspp_block(
- conv,
- num_filters1=d_feature0,
- num_filters2=d_feature1,
- dropout_prob=dropout0,
- name=name + '_aspp24',
- dilation_rate=24)
- conv = fluid.layers.concat(
- [aspp3, aspp6, aspp12, aspp18, aspp24], axis=1)
- conv = ConvNorm(
- conv,
- num_filters=self.num_chan,
- filter_size=1,
- stride=1,
- groups=1,
- norm_decay=0.,
- norm_type='gn',
- norm_groups=self.norm_groups,
- dilation=1,
- lr_scale=1,
- freeze_norm=False,
- act="relu",
- norm_name=name + "_dense_aspp_reduce_gn",
- initializer=None,
- bias_attr=False,
- name=name + "_dense_aspp_reduce_gn")
- return conv
- def get_output(self, body_dict):
- """
- Add FPN onto backbone.
- Args:
- body_dict(OrderedDict): Dictionary of variables and each element is the
- output of backbone.
- Return:
- fpn_dict(OrderedDict): A dictionary represents the output of FPN with
- their name.
- spatial_scale(list): A list of multiplicative spatial scale factor.
- """
- spatial_scale = copy.deepcopy(self.spatial_scale)
- body_name_list = list(body_dict.keys())[::-1]
- num_backbone_stages = len(body_name_list)
- self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
- fpn_inner_name = 'fpn_inner_' + body_name_list[0]
- body_input = body_dict[body_name_list[0]]
- fan = body_input.shape[1]
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- self.fpn_inner_output[0] = ConvNorm(
- body_input,
- self.num_chan,
- 1,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=fpn_inner_name,
- norm_name=fpn_inner_name)
- else:
- self.fpn_inner_output[0] = fluid.layers.conv2d(
- body_input,
- self.num_chan,
- 1,
- param_attr=ParamAttr(
- name=fpn_inner_name + "_w",
- initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_inner_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_inner_name)
- self.fpn_inner_output[0] += self.dense_aspp(
- self.fpn_inner_output[0], name="acfpn")
- for i in range(1, num_backbone_stages):
- body_name = body_name_list[i]
- body_input = body_dict[body_name]
- top_output = self.fpn_inner_output[i - 1]
- fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
- top_output)
- self.fpn_inner_output[i] = fpn_inner_single
- fpn_dict = {}
- fpn_name_list = []
- for i in range(num_backbone_stages):
- fpn_name = 'fpn_' + body_name_list[i]
- fan = self.fpn_inner_output[i].shape[1] * 3 * 3
- if self.norm_type:
- initializer = Xavier(fan_out=fan)
- fpn_output = ConvNorm(
- self.fpn_inner_output[i],
- self.num_chan,
- 3,
- initializer=initializer,
- norm_type=self.norm_type,
- freeze_norm=self.freeze_norm,
- name=fpn_name,
- norm_name=fpn_name)
- else:
- fpn_output = fluid.layers.conv2d(
- self.fpn_inner_output[i],
- self.num_chan,
- filter_size=3,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_output
- fpn_name_list.append(fpn_name)
- if not self.has_extra_convs and self.max_level - self.min_level == len(
- spatial_scale):
- body_top_name = fpn_name_list[0]
- body_top_extension = fluid.layers.pool2d(
- fpn_dict[body_top_name],
- 1,
- 'max',
- pool_stride=2,
- name=body_top_name + '_subsampled_2x')
- fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
- fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- # Coarser FPN levels introduced for RetinaNet
- highest_backbone_level = self.min_level + len(spatial_scale) - 1
- if self.has_extra_convs and self.max_level > highest_backbone_level:
- if self.use_c5:
- fpn_blob = body_dict[body_name_list[0]]
- else:
- fpn_blob = fpn_dict[fpn_name_list[0]]
- for i in range(highest_backbone_level + 1, self.max_level + 1):
- fpn_blob_in = fpn_blob
- fpn_name = 'fpn_' + str(i)
- if i > highest_backbone_level + 1:
- fpn_blob_in = fluid.layers.relu(fpn_blob)
- fan = fpn_blob_in.shape[1] * 3 * 3
- fpn_blob = fluid.layers.conv2d(
- input=fpn_blob_in,
- num_filters=self.num_chan,
- filter_size=3,
- stride=2,
- padding=1,
- param_attr=ParamAttr(
- name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
- bias_attr=ParamAttr(
- name=fpn_name + "_b",
- learning_rate=2.,
- regularizer=L2Decay(0.)),
- name=fpn_name)
- fpn_dict[fpn_name] = fpn_blob
- fpn_name_list.insert(0, fpn_name)
- spatial_scale.insert(0, spatial_scale[0] * 0.5)
- res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
- return res_dict, spatial_scale
|