123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- from ppdet.modeling.ops import SSDOutputDecoder
- __all__ = ['SSD']
- @register
- class SSD(object):
- """
- Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325
- Args:
- backbone (object): backbone instance
- multi_box_head (object): `MultiBoxHead` instance
- output_decoder (object): `SSDOutputDecoder` instance
- num_classes (int): number of output classes
- """
- __category__ = 'architecture'
- __inject__ = ['backbone', 'multi_box_head', 'output_decoder', 'fpn']
- __shared__ = ['num_classes']
- def __init__(self,
- backbone,
- fpn=None,
- multi_box_head='MultiBoxHead',
- output_decoder=SSDOutputDecoder().__dict__,
- num_classes=21):
- super(SSD, self).__init__()
- self.backbone = backbone
- self.fpn = fpn
- self.multi_box_head = multi_box_head
- self.num_classes = num_classes
- self.output_decoder = output_decoder
- if isinstance(output_decoder, dict):
- self.output_decoder = SSDOutputDecoder(**output_decoder)
- def build(self, feed_vars, mode='train'):
- im = feed_vars['image']
- if mode == 'train' or mode == 'eval':
- gt_bbox = feed_vars['gt_bbox']
- gt_class = feed_vars['gt_class']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- # backbone
- body_feats = self.backbone(im)
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- if isinstance(body_feats, OrderedDict):
- body_feat_names = list(body_feats.keys())
- body_feats = [body_feats[name] for name in body_feat_names]
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]
- locs, confs, box, box_var = self.multi_box_head(
- inputs=body_feats, image=im, num_classes=self.num_classes)
- if mode == 'train':
- loss = fluid.layers.ssd_loss(locs, confs, gt_bbox, gt_class, box,
- box_var)
- loss = fluid.layers.reduce_sum(loss)
- return {'loss': loss}
- else:
- pred = self.output_decoder(locs, confs, box, box_var)
- return {'bbox': pred}
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'im_shape': {'shape': [None, 3], 'dtype': 'int32', 'lod_level': 0},
- 'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(
- self,
- image_shape=[3, None, None],
- fields=['image', 'im_id', 'gt_bbox', 'gt_class'], # for train
- use_dataloader=True,
- iterable=False):
- inputs_def = self._inputs_def(image_shape)
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars):
- return self.build(feed_vars, 'eval')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
- def is_bbox_normalized(self):
- # SSD use output_decoder in output layers, bbox is normalized
- # to range [0, 1], is_bbox_normalized is used in eval.py and infer.py
- return True
|