123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import copy
- import paddle.fluid as fluid
- from ppdet.experimental import mixed_precision_global_state
- from ppdet.core.workspace import register
- from .input_helper import multiscale_def
- __all__ = ['MaskRCNN']
- @register
- class MaskRCNN(object):
- """
- Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870
- Args:
- backbone (object): backbone instance
- rpn_head (object): `RPNhead` instance
- bbox_assigner (object): `BBoxAssigner` instance
- roi_extractor (object): ROI extractor instance
- bbox_head (object): `BBoxHead` instance
- mask_assigner (object): `MaskAssigner` instance
- mask_head (object): `MaskHead` instance
- fpn (object): feature pyramid network instance
- """
- __category__ = 'architecture'
- __inject__ = [
- 'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
- 'mask_assigner', 'mask_head', 'fpn'
- ]
- def __init__(self,
- backbone,
- rpn_head,
- bbox_head='BBoxHead',
- bbox_assigner='BBoxAssigner',
- roi_extractor='RoIAlign',
- mask_assigner='MaskAssigner',
- mask_head='MaskHead',
- rpn_only=False,
- fpn=None):
- super(MaskRCNN, self).__init__()
- self.backbone = backbone
- self.rpn_head = rpn_head
- self.bbox_assigner = bbox_assigner
- self.roi_extractor = roi_extractor
- self.bbox_head = bbox_head
- self.mask_assigner = mask_assigner
- self.mask_head = mask_head
- self.rpn_only = rpn_only
- self.fpn = fpn
- def build(self, feed_vars, mode='train'):
- if mode == 'train':
- required_fields = [
- 'gt_class', 'gt_bbox', 'gt_mask', 'is_crowd', 'im_info'
- ]
- else:
- required_fields = ['im_shape', 'im_info']
- self._input_check(required_fields, feed_vars)
- im = feed_vars['image']
- im_info = feed_vars['im_info']
- mixed_precision_enabled = mixed_precision_global_state() is not None
- # cast inputs to FP16
- if mixed_precision_enabled:
- im = fluid.layers.cast(im, 'float16')
- # backbone
- body_feats = self.backbone(im)
- # cast features back to FP32
- if mixed_precision_enabled:
- body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
- for k, v in body_feats.items())
- # FPN
- spatial_scale = None
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- # RPN proposals
- rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)
- if mode == 'train':
- rpn_loss = self.rpn_head.get_loss(im_info, feed_vars['gt_bbox'],
- feed_vars['is_crowd'])
- outs = self.bbox_assigner(
- rpn_rois=rois,
- gt_classes=feed_vars['gt_class'],
- is_crowd=feed_vars['is_crowd'],
- gt_boxes=feed_vars['gt_bbox'],
- im_info=feed_vars['im_info'])
- rois = outs[0]
- labels_int32 = outs[1]
- if self.fpn is None:
- last_feat = body_feats[list(body_feats.keys())[-1]]
- roi_feat = self.roi_extractor(last_feat, rois)
- else:
- roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
- loss = self.bbox_head.get_loss(roi_feat, labels_int32, *outs[2:])
- loss.update(rpn_loss)
- mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
- rois=rois,
- gt_classes=feed_vars['gt_class'],
- is_crowd=feed_vars['is_crowd'],
- gt_segms=feed_vars['gt_mask'],
- im_info=feed_vars['im_info'],
- labels_int32=labels_int32)
- if self.fpn is None:
- bbox_head_feat = self.bbox_head.get_head_feat()
- feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
- else:
- feat = self.roi_extractor(
- body_feats, mask_rois, spatial_scale, is_mask=True)
- mask_loss = self.mask_head.get_loss(feat, mask_int32)
- loss.update(mask_loss)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- if self.rpn_only:
- im_scale = fluid.layers.slice(
- im_info, [1], starts=[2], ends=[3])
- im_scale = fluid.layers.sequence_expand(im_scale, rois)
- rois = rois / im_scale
- return {'proposal': rois}
- mask_name = 'mask_pred'
- mask_pred, bbox_pred = self.single_scale_eval(
- body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
- spatial_scale)
- return {'bbox': bbox_pred, 'mask': mask_pred}
- def build_multi_scale(self, feed_vars, mask_branch=False):
- required_fields = ['image', 'im_info']
- self._input_check(required_fields, feed_vars)
- result = {}
- if not mask_branch:
- assert 'im_shape' in feed_vars, \
- "{} has no im_shape field".format(feed_vars)
- result.update(feed_vars)
- for i in range(len(self.im_info_names) // 2):
- im = feed_vars[self.im_info_names[2 * i]]
- im_info = feed_vars[self.im_info_names[2 * i + 1]]
- body_feats = self.backbone(im)
- # FPN
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')
- if not mask_branch:
- im_shape = feed_vars['im_shape']
- body_feat_names = list(body_feats.keys())
- if self.fpn is None:
- body_feat = body_feats[body_feat_names[-1]]
- roi_feat = self.roi_extractor(body_feat, rois)
- else:
- roi_feat = self.roi_extractor(body_feats, rois,
- spatial_scale)
- pred = self.bbox_head.get_prediction(
- roi_feat, rois, im_info, im_shape, return_box_score=True)
- bbox_name = 'bbox_' + str(i)
- score_name = 'score_' + str(i)
- if 'flip' in im.name:
- bbox_name += '_flip'
- score_name += '_flip'
- result[bbox_name] = pred['bbox']
- result[score_name] = pred['score']
- else:
- mask_name = 'mask_pred_' + str(i)
- bbox_pred = feed_vars['bbox']
- #result.update({im.name: im})
- if 'flip' in im.name:
- mask_name += '_flip'
- bbox_pred = feed_vars['bbox_flip']
- mask_pred, bbox_pred = self.single_scale_eval(
- body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
- spatial_scale, bbox_pred)
- result[mask_name] = mask_pred
- return result
- def single_scale_eval(self,
- body_feats,
- mask_name,
- rois,
- im_info,
- im_shape,
- spatial_scale,
- bbox_pred=None):
- if not bbox_pred:
- if self.fpn is None:
- last_feat = body_feats[list(body_feats.keys())[-1]]
- roi_feat = self.roi_extractor(last_feat, rois)
- else:
- roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
- bbox_pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
- im_shape)
- bbox_pred = bbox_pred['bbox']
- # share weight
- bbox_shape = fluid.layers.shape(bbox_pred)
- bbox_size = fluid.layers.reduce_prod(bbox_shape)
- bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
- size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
- cond = fluid.layers.less_than(x=bbox_size, y=size)
- mask_pred = fluid.layers.create_global_var(
- shape=[1],
- value=0.0,
- dtype='float32',
- persistable=False,
- name=mask_name)
- def noop():
- fluid.layers.assign(input=bbox_pred, output=mask_pred)
- def process_boxes():
- bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])
- im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
- im_scale = fluid.layers.sequence_expand(im_scale, bbox)
- mask_rois = bbox * im_scale
- if self.fpn is None:
- last_feat = body_feats[list(body_feats.keys())[-1]]
- mask_feat = self.roi_extractor(last_feat, mask_rois)
- mask_feat = self.bbox_head.get_head_feat(mask_feat)
- else:
- mask_feat = self.roi_extractor(
- body_feats, mask_rois, spatial_scale, is_mask=True)
- mask_out = self.mask_head.get_prediction(mask_feat, bbox)
- fluid.layers.assign(input=mask_out, output=mask_pred)
- fluid.layers.cond(cond, noop, process_boxes)
- return mask_pred, bbox_pred
- def _input_check(self, require_fields, feed_vars):
- for var in require_fields:
- assert var in feed_vars, \
- "{} has no {} field".format(feed_vars, var)
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'is_crowd': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'gt_mask': {'shape': [None, 2], 'dtype': 'float32', 'lod_level': 3}, # polygon coordinates
- 'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(self,
- image_shape=[3, None, None],
- fields=[
- 'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
- 'is_crowd', 'gt_mask'
- ],
- multi_scale=False,
- num_scales=-1,
- use_flip=None,
- use_dataloader=True,
- iterable=False,
- mask_branch=False):
- inputs_def = self._inputs_def(image_shape)
- fields = copy.deepcopy(fields)
- if multi_scale:
- ms_def, ms_fields = multiscale_def(image_shape, num_scales,
- use_flip)
- inputs_def.update(ms_def)
- fields += ms_fields
- self.im_info_names = ['image', 'im_info'] + ms_fields
- if mask_branch:
- box_fields = ['bbox', 'bbox_flip'] if use_flip else ['bbox']
- for key in box_fields:
- inputs_def[key] = {
- 'shape': [None, 6],
- 'dtype': 'float32',
- 'lod_level': 1
- }
- fields += box_fields
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- use_dataloader = use_dataloader and not mask_branch
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=16,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars, multi_scale=None, mask_branch=False):
- if multi_scale:
- return self.build_multi_scale(feed_vars, mask_branch)
- return self.build(feed_vars, 'test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
|