123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import copy
- import paddle.fluid as fluid
- from ppdet.core.workspace import register
- from ppdet.utils.check import check_version
- from .input_helper import multiscale_def
- __all__ = ['HybridTaskCascade']
- @register
- class HybridTaskCascade(object):
- """
- Hybrid Task Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1901.07518
- Args:
- backbone (object): backbone instance
- rpn_head (object): `RPNhead` instance
- bbox_assigner (object): `BBoxAssigner` instance
- roi_extractor (object): ROI extractor instance
- bbox_head (object): `HTCBBoxHead` instance
- mask_assigner (object): `MaskAssigner` instance
- mask_head (object): `HTCMaskHead` instance
- fpn (object): feature pyramid network instance
- semantic_roi_extractor(object): ROI extractor instance
- fused_semantic_head (object): `FusedSemanticHead` instance
- """
- __category__ = 'architecture'
- __inject__ = [
- 'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
- 'mask_assigner', 'mask_head', 'fpn', 'semantic_roi_extractor',
- 'fused_semantic_head'
- ]
- def __init__(self,
- backbone,
- rpn_head,
- roi_extractor='FPNRoIAlign',
- semantic_roi_extractor='RoIAlign',
- fused_semantic_head='FusedSemanticHead',
- bbox_head='HTCBBoxHead',
- bbox_assigner='CascadeBBoxAssigner',
- mask_assigner='MaskAssigner',
- mask_head='HTCMaskHead',
- rpn_only=False,
- fpn='FPN'):
- super(HybridTaskCascade, self).__init__()
- check_version('2.0.0-rc0')
- assert fpn is not None, "HTC requires FPN"
- self.backbone = backbone
- self.fpn = fpn
- self.rpn_head = rpn_head
- self.bbox_assigner = bbox_assigner
- self.roi_extractor = roi_extractor
- self.semantic_roi_extractor = semantic_roi_extractor
- self.fused_semantic_head = fused_semantic_head
- self.bbox_head = bbox_head
- self.mask_assigner = mask_assigner
- self.mask_head = mask_head
- self.rpn_only = rpn_only
- # Cascade local cfg
- self.cls_agnostic_bbox_reg = 2
- (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
- self.cascade_bbox_reg_weights = [
- [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
- [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
- [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
- ]
- self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]
- self.num_stage = 3
- self.with_mask = True
- self.interleaved = True
- self.mask_info_flow = True
- self.with_semantic = True
- self.use_bias_scalar = True
- def build(self, feed_vars, mode='train'):
- if mode == 'train':
- required_fields = [
- 'gt_class', 'gt_bbox', 'gt_mask', 'is_crowd', 'im_info',
- 'semantic'
- ]
- else:
- required_fields = ['im_shape', 'im_info']
- self._input_check(required_fields, feed_vars)
- im = feed_vars['image']
- if mode == 'train':
- gt_bbox = feed_vars['gt_bbox']
- is_crowd = feed_vars['is_crowd']
- im_info = feed_vars['im_info']
- # backbone
- body_feats = self.backbone(im)
- loss = {}
- # FPN
- if self.fpn is not None:
- body_feats, spatial_scale = self.fpn.get_output(body_feats)
- if self.with_semantic:
- # TODO: use cfg
- semantic_feat, seg_pred = self.fused_semantic_head.get_out(
- body_feats)
- if mode == 'train':
- s_label = feed_vars['semantic']
- semantic_loss = self.fused_semantic_head.get_loss(seg_pred,
- s_label) * 0.2
- loss.update({"semantic_loss": semantic_loss})
- else:
- semantic_feat = None
- # rpn proposals
- rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)
- if mode == 'train':
- rpn_loss = self.rpn_head.get_loss(im_info, gt_bbox, is_crowd)
- loss.update(rpn_loss)
- else:
- if self.rpn_only:
- im_scale = fluid.layers.slice(
- im_info, [1], starts=[2], ends=[3])
- im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
- rois = rpn_rois / im_scale
- return {'proposal': rois}
- proposal_list = []
- roi_feat_list = []
- rcnn_pred_list = []
- rcnn_target_list = []
- mask_logits_list = []
- mask_target_list = []
- proposals = None
- bbox_pred = None
- outs = None
- refined_bbox = rpn_rois
- max_overlap = None
- for i in range(self.num_stage):
- # BBox Branch
- if mode == 'train':
- outs = self.bbox_assigner(
- input_rois=refined_bbox,
- feed_vars=feed_vars,
- curr_stage=i,
- max_overlap=max_overlap)
- proposals = outs[0]
- max_overlap = outs[-1]
- rcnn_target_list.append(outs[:-1])
- else:
- proposals = refined_bbox
- proposal_list.append(proposals)
- # extract roi features
- roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
- if self.with_semantic:
- semantic_roi_feat = self.semantic_roi_extractor(semantic_feat,
- proposals)
- if semantic_roi_feat is not None:
- semantic_roi_feat = fluid.layers.pool2d(
- semantic_roi_feat,
- pool_size=2,
- pool_stride=2,
- pool_padding='SAME')
- roi_feat = fluid.layers.sum([roi_feat, semantic_roi_feat])
- roi_feat_list.append(roi_feat)
- # bbox head
- cls_score, bbox_pred = self.bbox_head.get_output(
- roi_feat,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
- name='_' + str(i))
- rcnn_pred_list.append((cls_score, bbox_pred))
- # Mask Branch
- if self.with_mask:
- if mode == 'train':
- labels_int32 = outs[1]
- if self.interleaved:
- refined_bbox = self._decode_box(
- proposals, bbox_pred, curr_stage=i)
- proposals = refined_bbox
- mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
- rois=proposals,
- gt_classes=feed_vars['gt_class'],
- is_crowd=feed_vars['is_crowd'],
- gt_segms=feed_vars['gt_mask'],
- im_info=feed_vars['im_info'],
- labels_int32=labels_int32)
- mask_target_list.append(mask_int32)
- mask_feat = self.roi_extractor(
- body_feats, mask_rois, spatial_scale, is_mask=True)
- if self.with_semantic:
- semantic_roi_feat = self.semantic_roi_extractor(
- semantic_feat, mask_rois)
- if semantic_roi_feat is not None:
- mask_feat = fluid.layers.sum(
- [mask_feat, semantic_roi_feat])
- if self.mask_info_flow:
- last_feat = None
- for j in range(i):
- last_feat = self.mask_head.get_output(
- mask_feat,
- last_feat,
- return_logits=False,
- return_feat=True,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i]
- if self.use_bias_scalar else 1.0,
- name='_' + str(i) + '_' + str(j))
- mask_logits = self.mask_head.get_output(
- mask_feat,
- last_feat,
- return_logits=True,
- return_feat=False,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i]
- if self.use_bias_scalar else 1.0,
- name='_' + str(i))
- else:
- mask_logits = self.mask_head.get_output(
- mask_feat,
- return_logits=True,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i]
- if self.use_bias_scalar else 1.0,
- name='_' + str(i))
- mask_logits_list.append(mask_logits)
- if i < self.num_stage - 1 and not self.interleaved:
- refined_bbox = self._decode_box(
- proposals, bbox_pred, curr_stage=i)
- elif i < self.num_stage - 1 and mode != 'train':
- refined_bbox = self._decode_box(
- proposals, bbox_pred, curr_stage=i)
- if mode == 'train':
- bbox_loss = self.bbox_head.get_loss(
- rcnn_pred_list, rcnn_target_list, self.cascade_rcnn_loss_weight)
- loss.update(bbox_loss)
- mask_loss = self.mask_head.get_loss(mask_logits_list,
- mask_target_list,
- self.cascade_rcnn_loss_weight)
- loss.update(mask_loss)
- total_loss = fluid.layers.sum(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- else:
- mask_name = 'mask_pred'
- mask_pred, bbox_pred = self.single_scale_eval(
- body_feats,
- spatial_scale,
- im_info,
- mask_name,
- bbox_pred,
- roi_feat_list,
- rcnn_pred_list,
- proposal_list,
- feed_vars['im_shape'],
- semantic_feat=semantic_feat if self.with_semantic else None)
- return {'bbox': bbox_pred, 'mask': mask_pred}
- def single_scale_eval(self,
- body_feats,
- spatial_scale,
- im_info,
- mask_name,
- bbox_pred,
- roi_feat_list=None,
- rcnn_pred_list=None,
- proposal_list=None,
- im_shape=None,
- use_multi_test=False,
- semantic_feat=None):
- if not use_multi_test:
- bbox_pred = self.bbox_head.get_prediction(
- im_info, im_shape, roi_feat_list, rcnn_pred_list, proposal_list,
- self.cascade_bbox_reg_weights)
- bbox_pred = bbox_pred['bbox']
- # share weight
- bbox_shape = fluid.layers.shape(bbox_pred)
- bbox_size = fluid.layers.reduce_prod(bbox_shape)
- bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
- size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
- cond = fluid.layers.less_than(x=bbox_size, y=size)
- mask_pred = fluid.layers.create_global_var(
- shape=[1],
- value=0.0,
- dtype='float32',
- persistable=False,
- name=mask_name)
- def noop():
- fluid.layers.assign(input=bbox_pred, output=mask_pred)
- def process_boxes():
- bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])
- im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
- im_scale = fluid.layers.sequence_expand(im_scale, bbox)
- bbox = fluid.layers.cast(bbox, dtype='float32')
- im_scale = fluid.layers.cast(im_scale, dtype='float32')
- mask_rois = bbox * im_scale
- mask_feat = self.roi_extractor(
- body_feats, mask_rois, spatial_scale, is_mask=True)
- if self.with_semantic:
- semantic_roi_feat = self.semantic_roi_extractor(semantic_feat,
- mask_rois)
- if semantic_roi_feat is not None:
- mask_feat = fluid.layers.sum([mask_feat, semantic_roi_feat])
- mask_logits_list = []
- mask_pred_list = []
- for i in range(self.num_stage):
- if self.mask_info_flow:
- last_feat = None
- for j in range(i):
- last_feat = self.mask_head.get_output(
- mask_feat,
- last_feat,
- return_logits=False,
- return_feat=True,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i]
- if self.use_bias_scalar else 1.0,
- name='_' + str(i) + '_' + str(j))
- mask_logits = self.mask_head.get_output(
- mask_feat,
- last_feat,
- return_logits=True,
- return_feat=False,
- wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i]
- if self.use_bias_scalar else 1.0,
- name='_' + str(i))
- mask_logits_list.append(mask_logits)
- else:
- mask_logits = self.mask_head.get_output(
- mask_feat,
- return_logits=True,
- return_feat=False,
- name='_' + str(i))
- mask_pred_out = self.mask_head.get_prediction(mask_logits, bbox)
- mask_pred_list.append(mask_pred_out)
- mask_pred_out = fluid.layers.sum(mask_pred_list) / float(
- len(mask_pred_list))
- fluid.layers.assign(input=mask_pred_out, output=mask_pred)
- fluid.layers.cond(cond, noop, process_boxes)
- return mask_pred, bbox_pred
- def _input_check(self, require_fields, feed_vars):
- for var in require_fields:
- assert var in feed_vars, \
- "{} has no {} field".format(feed_vars, var)
- def _decode_box(self, proposals, bbox_pred, curr_stage):
- rcnn_loc_delta_r = fluid.layers.reshape(
- bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
- # only use fg box delta to decode box
- rcnn_loc_delta_s = fluid.layers.slice(
- rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
- refined_bbox = fluid.layers.box_coder(
- prior_box=proposals,
- prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
- target_box=rcnn_loc_delta_s,
- code_type='decode_center_size',
- box_normalized=False,
- axis=1, )
- refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])
- return refined_bbox
- def _inputs_def(self, image_shape):
- im_shape = [None] + image_shape
- # yapf: disable
- inputs_def = {
- 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
- 'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
- 'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
- 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
- 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'is_crowd': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
- 'gt_mask': {'shape': [None, 2], 'dtype': 'float32', 'lod_level': 3}, # polygon coordinates
- 'semantic': {'shape': [None, 1, None, None], 'dtype': 'int32', 'lod_level': 0},
- }
- # yapf: enable
- return inputs_def
- def build_inputs(self,
- image_shape=[3, None, None],
- fields=[
- 'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
- 'is_crowd', 'gt_mask', 'semantic'
- ],
- multi_scale=False,
- num_scales=-1,
- use_flip=None,
- use_dataloader=True,
- iterable=False,
- mask_branch=False):
- inputs_def = self._inputs_def(image_shape)
- fields = copy.deepcopy(fields)
- if multi_scale:
- ms_def, ms_fields = multiscale_def(image_shape, num_scales,
- use_flip)
- inputs_def.update(ms_def)
- fields += ms_fields
- self.im_info_names = ['image', 'im_info'] + ms_fields
- if mask_branch:
- box_fields = ['bbox', 'bbox_flip'] if use_flip else ['bbox']
- for key in box_fields:
- inputs_def[key] = {
- 'shape': [6],
- 'dtype': 'float32',
- 'lod_level': 1
- }
- fields += box_fields
- feed_vars = OrderedDict([(key, fluid.data(
- name=key,
- shape=inputs_def[key]['shape'],
- dtype=inputs_def[key]['dtype'],
- lod_level=inputs_def[key]['lod_level'])) for key in fields])
- use_dataloader = use_dataloader and not mask_branch
- loader = fluid.io.DataLoader.from_generator(
- feed_list=list(feed_vars.values()),
- capacity=64,
- use_double_buffer=True,
- iterable=iterable) if use_dataloader else None
- return feed_vars, loader
- def train(self, feed_vars):
- return self.build(feed_vars, 'train')
- def eval(self, feed_vars, multi_scale=None, mask_branch=False):
- if multi_scale:
- return self.build_multi_scale(feed_vars, mask_branch)
- return self.build(feed_vars, 'test')
- def test(self, feed_vars, exclude_nms=False):
- assert not exclude_nms, "exclude_nms for {} is not support currently".format(
- self.__class__.__name__)
- return self.build(feed_vars, 'test')
|