123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import ast
- import argparse
- def argsparser():
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument(
- "--det_model_dir",
- type=str,
- default=None,
- help=("Directory include:'model.pdiparams', 'model.pdmodel', "
- "'infer_cfg.yml', created by tools/export_model.py."),
- required=True)
- parser.add_argument(
- "--keypoint_model_dir",
- type=str,
- default=None,
- help=("Directory include:'model.pdiparams', 'model.pdmodel', "
- "'infer_cfg.yml', created by tools/export_model.py."),
- required=True)
- parser.add_argument(
- "--image_file", type=str, default=None, help="Path of image file.")
- parser.add_argument(
- "--image_dir",
- type=str,
- default=None,
- help="Dir of image file, `image_file` has a higher priority.")
- parser.add_argument(
- "--keypoint_batch_size",
- type=int,
- default=8,
- help=("batch_size for keypoint inference. In detection-keypoint unit"
- "inference, the batch size in detection is 1. Then collate det "
- "result in batch for keypoint inference."))
- parser.add_argument(
- "--video_file",
- type=str,
- default=None,
- help="Path of video file, `video_file` or `camera_id` has a highest priority."
- )
- parser.add_argument(
- "--camera_id",
- type=int,
- default=-1,
- help="device id of camera to predict.")
- parser.add_argument(
- "--det_threshold", type=float, default=0.5, help="Threshold of score.")
- parser.add_argument(
- "--keypoint_threshold",
- type=float,
- default=0.5,
- help="Threshold of score.")
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output",
- help="Directory of output visualization files.")
- parser.add_argument(
- "--run_mode",
- type=str,
- default='paddle',
- help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
- parser.add_argument(
- "--device",
- type=str,
- default='cpu',
- help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
- )
- parser.add_argument(
- "--run_benchmark",
- type=ast.literal_eval,
- default=False,
- help="Whether to predict a image_file repeatedly for benchmark")
- parser.add_argument(
- "--enable_mkldnn",
- type=ast.literal_eval,
- default=False,
- help="Whether use mkldnn with CPU.")
- parser.add_argument(
- "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
- parser.add_argument(
- "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
- parser.add_argument(
- "--trt_max_shape",
- type=int,
- default=1280,
- help="max_shape for TensorRT.")
- parser.add_argument(
- "--trt_opt_shape",
- type=int,
- default=640,
- help="opt_shape for TensorRT.")
- parser.add_argument(
- "--trt_calib_mode",
- type=bool,
- default=False,
- help="If the model is produced by TRT offline quantitative "
- "calibration, trt_calib_mode need to set True.")
- parser.add_argument(
- '--use_dark',
- type=ast.literal_eval,
- default=True,
- help='whether to use darkpose to get better keypoint position predict ')
- parser.add_argument(
- '--save_res',
- type=bool,
- default=False,
- help=(
- "whether to save predict results to json file"
- "1) store_res: a list of image_data"
- "2) image_data: [imageid, rects, [keypoints, scores]]"
- "3) rects: list of rect [xmin, ymin, xmax, ymax]"
- "4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list"
- "5) scores: mean of all joint conf"))
- return parser
|