README_cn.md 7.1 KB

English | 简体中文

特色垂类跟踪模型

大规模行人跟踪 (Pedestrian Tracking)

行人跟踪的主要应用之一是交通监控。

PathTrack包含720个视频序列,有着超过15000个行人的轨迹。包含了街景、舞蹈、体育运动、采访等各种场景的,大部分是移动摄像头拍摄场景。该数据集只有Pedestrian一类标注作为跟踪任务。

VisDrone是无人机视角拍摄的数据集,是以俯视视角为主。该数据集涵盖不同位置(取自中国数千个相距数千公里的14个不同城市)、不同环境(城市和乡村)、不同物体(行人、车辆、自行车等)和不同密度(稀疏和拥挤的场景)。VisDrone2019-MOT包含56个视频序列用于训练,7个视频序列用于验证。此处针对VisDrone2019-MOT多目标跟踪数据集进行提取,抽取出类别为pedestrian和people的数据组合成一个大的Pedestrian类别。

模型库

FairMOT在各个数据集val-set上Pedestrian类别的结果

数据集 骨干网络 输入尺寸 MOTA IDF1 FPS 下载链接 配置文件
PathTrack DLA-34 1088x608 44.9 59.3 - 下载链接 配置文件
VisDrone DLA-34 1088x608 49.2 63.1 - 下载链接 配置文件
VisDrone HRNetv2-W18 1088x608 40.5 54.7 - 下载链接 配置文件
VisDrone HRNetv2-W18 864x480 38.6 50.9 - 下载链接 配置文件
VisDrone HRNetv2-W18 576x320 30.6 47.2 - 下载链接 配置文件

注意:

  • FairMOT均使用DLA-34为骨干网络,4个GPU进行训练,每个GPU上batch size为6,训练30个epoch。

数据集准备和处理

1、数据集处理代码说明

代码统一都在tools目录下

# visdrone
tools/visdrone/visdrone2mot.py: 生成visdrone_pedestrian据集

2、visdrone_pedestrian数据集处理

# 复制tool/visdrone/visdrone2mot.py到数据集目录下
# 生成visdrone_pedestrian MOT格式的数据,抽取类别classes=1,2 (pedestrian, people)
<<--生成前目录-->>
├── VisDrone2019-MOT-val
│   ├── annotations
│   ├── sequences
│   ├── visdrone2mot.py
<<--生成后目录-->>
├── VisDrone2019-MOT-val
│   ├── annotations
│   ├── sequences
│   ├── visdrone2mot.py
│   ├── visdrone_pedestrian
│   │   ├── images
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── labels_with_ids
│   │   │   ├── train
│   │   │   ├── val
# 执行
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=val
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=train

快速开始

1. 训练

使用2个GPU通过如下命令一键式启动训练

python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_visdrone_pedestrian/ --gpus 0,1 tools/train.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml

2. 评估

使用单张GPU通过如下命令一键式启动评估

# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams

# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=output/fairmot_dla34_30e_1088x608_visdrone_pedestrian/model_final.pdparams

3. 预测

使用单个GPU通过如下命令预测一个视频,并保存为视频

# 预测一个视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams --video_file={your video name}.mp4  --save_videos

注意:

  • 请先确保已经安装了ffmpeg, Linux(Ubuntu)平台可以直接用以下命令安装:apt-get update && apt-get install -y ffmpeg

4. 导出预测模型

CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams

5. 用导出的模型基于Python去预测

python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_visdrone_pedestrian --video_file={your video name}.mp4 --device=GPU --save_mot_txts

注意:

  • 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加--save_mot_txts表示保存跟踪结果的txt文件,或--save_images表示保存跟踪结果可视化图片。
  • 跟踪结果txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1

引用

@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}

@INPROCEEDINGS{8237302,
author={S. {Manen} and M. {Gygli} and D. {Dai} and L. V. {Gool}},
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
title={PathTrack: Fast Trajectory Annotation with Path Supervision},
year={2017},
volume={},
number={},
pages={290-299},
doi={10.1109/ICCV.2017.40},
ISSN={2380-7504},
month={Oct},}

@ARTICLE{9573394,
  author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  title={Detection and Tracking Meet Drones Challenge},
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3119563}
}