123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- # Modified by Peize Sun, Rufeng Zhang
- # ------------------------------------------------------------------------
- # Deformable DETR
- # Copyright (c) 2020 SenseTime. All Rights Reserved.
- # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
- # ------------------------------------------------------------------------
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # ------------------------------------------------------------------------
- """
- Train and eval functions used in main.py
- """
- import math
- import os
- import sys
- from typing import Iterable
- import torch
- import util.misc as utils
- from datasets.coco_eval import CocoEvaluator
- from datasets.panoptic_eval import PanopticEvaluator
- from datasets.data_prefetcher import data_prefetcher
- from mot_online.byte_tracker import BYTETracker
- def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
- data_loader: Iterable, optimizer: torch.optim.Optimizer,
- device: torch.device, epoch: int, max_norm: float = 0):
- model.train()
- criterion.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
- metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
- header = 'Epoch: [{}]'.format(epoch)
- print_freq = 10
- prefetcher = data_prefetcher(data_loader, device, prefetch=True)
- samples, targets = prefetcher.next()
- # for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
- for _ in metric_logger.log_every(range(len(data_loader)), print_freq, header):
- outputs, pre_outputs, pre_targets = model([samples, targets])
- loss_dict = criterion(outputs, targets, pre_outputs, pre_targets)
- weight_dict = criterion.weight_dict
- losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
- # reduce losses over all GPUs for logging purposes
- loss_dict_reduced = utils.reduce_dict(loss_dict)
- loss_dict_reduced_unscaled = {f'{k}_unscaled': v
- for k, v in loss_dict_reduced.items()}
- loss_dict_reduced_scaled = {k: v * weight_dict[k]
- for k, v in loss_dict_reduced.items() if k in weight_dict}
- losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
- loss_value = losses_reduced_scaled.item()
- if not math.isfinite(loss_value):
- print("Loss is {}, stopping training".format(loss_value))
- print(loss_dict_reduced)
- sys.exit(1)
- optimizer.zero_grad()
- losses.backward()
- if max_norm > 0:
- grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
- else:
- grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
- optimizer.step()
- metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
- metric_logger.update(class_error=loss_dict_reduced['class_error'])
- metric_logger.update(lr=optimizer.param_groups[0]["lr"])
- metric_logger.update(grad_norm=grad_total_norm)
- samples, targets = prefetcher.next()
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
- @torch.no_grad()
- def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir, tracker=None,
- phase='train', det_val=False):
- model.eval()
- criterion.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
- header = 'Test:'
- iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
- coco_evaluator = CocoEvaluator(base_ds, iou_types)
- # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
- panoptic_evaluator = None
- if 'panoptic' in postprocessors.keys():
- panoptic_evaluator = PanopticEvaluator(
- data_loader.dataset.ann_file,
- data_loader.dataset.ann_folder,
- output_dir=os.path.join(output_dir, "panoptic_eval"),
- )
- res_tracks = dict()
- pre_embed = None
- for samples, targets in metric_logger.log_every(data_loader, 10, header):
- # pre process for track.
- if tracker is not None:
- if phase != 'train':
- assert samples.tensors.shape[0] == 1, "Now only support inference of batchsize 1."
- frame_id = targets[0].get("frame_id", None)
- assert frame_id is not None
- frame_id = frame_id.item()
- if frame_id == 1:
- tracker.reset_all()
- pre_embed = None
-
- samples = samples.to(device)
- targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
-
- if det_val:
- outputs = model(samples)
- else:
- outputs, pre_embed = model(samples, pre_embed)
- loss_dict = criterion(outputs, targets)
- weight_dict = criterion.weight_dict
- # reduce losses over all GPUs for logging purposes
- loss_dict_reduced = utils.reduce_dict(loss_dict)
- loss_dict_reduced_scaled = {k: v * weight_dict[k]
- for k, v in loss_dict_reduced.items() if k in weight_dict}
- loss_dict_reduced_unscaled = {f'{k}_unscaled': v
- for k, v in loss_dict_reduced.items()}
- metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
- **loss_dict_reduced_scaled,
- **loss_dict_reduced_unscaled)
- metric_logger.update(class_error=loss_dict_reduced['class_error'])
- orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
- results = postprocessors['bbox'](outputs, orig_target_sizes)
- if 'segm' in postprocessors.keys():
- target_sizes = torch.stack([t["size"] for t in targets], dim=0)
- results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
- res = {target['image_id'].item(): output for target, output in zip(targets, results)}
- # post process for track.
- if tracker is not None:
- if frame_id == 1:
- res_track = tracker.init_track(results[0])
- else:
- res_track = tracker.step(results[0])
- res_tracks[targets[0]['image_id'].item()] = res_track
- if coco_evaluator is not None:
- coco_evaluator.update(res)
- if panoptic_evaluator is not None:
- res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes)
- for i, target in enumerate(targets):
- image_id = target["image_id"].item()
- file_name = f"{image_id:012d}.png"
- res_pano[i]["image_id"] = image_id
- res_pano[i]["file_name"] = file_name
- panoptic_evaluator.update(res_pano)
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- if coco_evaluator is not None:
- coco_evaluator.synchronize_between_processes()
- if panoptic_evaluator is not None:
- panoptic_evaluator.synchronize_between_processes()
- # accumulate predictions from all images
- if coco_evaluator is not None:
- coco_evaluator.accumulate()
- coco_evaluator.summarize()
- panoptic_res = None
- if panoptic_evaluator is not None:
- panoptic_res = panoptic_evaluator.summarize()
- stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
- if coco_evaluator is not None:
- if 'bbox' in postprocessors.keys():
- stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
- if 'segm' in postprocessors.keys():
- stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
- if panoptic_res is not None:
- stats['PQ_all'] = panoptic_res["All"]
- stats['PQ_th'] = panoptic_res["Things"]
- stats['PQ_st'] = panoptic_res["Stuff"]
- return stats, coco_evaluator, res_tracks
- @torch.no_grad()
- def evaluate_track(args, model, criterion, postprocessors, data_loader, base_ds, device, output_dir, tracker=None,
- phase='train', det_val=False):
- model.eval()
- criterion.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
- header = 'Test:'
- iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
- coco_evaluator = CocoEvaluator(base_ds, iou_types)
- # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
- res_tracks = dict()
- pre_embed = None
- for samples, targets in metric_logger.log_every(data_loader, 50, header):
- # pre process for track.
- if tracker is not None:
- frame_id = targets[0].get("frame_id", None)
- assert frame_id is not None
- frame_id = frame_id.item()
- if frame_id == 1:
- tracker = BYTETracker(args)
- pre_embed = None
-
- samples = samples.to(device)
- targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
-
- if det_val:
- outputs = model(samples)
- else:
- outputs, pre_embed = model(samples, pre_embed)
- loss_dict = criterion(outputs, targets)
- weight_dict = criterion.weight_dict
- # reduce losses over all GPUs for logging purposes
- loss_dict_reduced = utils.reduce_dict(loss_dict)
- loss_dict_reduced_scaled = {k: v * weight_dict[k]
- for k, v in loss_dict_reduced.items() if k in weight_dict}
- loss_dict_reduced_unscaled = {f'{k}_unscaled': v
- for k, v in loss_dict_reduced.items()}
- metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
- **loss_dict_reduced_scaled,
- **loss_dict_reduced_unscaled)
- metric_logger.update(class_error=loss_dict_reduced['class_error'])
- orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
- results = postprocessors['bbox'](outputs, orig_target_sizes)
- if 'segm' in postprocessors.keys():
- target_sizes = torch.stack([t["size"] for t in targets], dim=0)
- results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
- res = {target['image_id'].item(): output for target, output in zip(targets, results)}
- # post process for track.
- if tracker is not None:
- res_track = tracker.update(results[0])
- res_tracks[targets[0]['image_id'].item()] = res_track
- if coco_evaluator is not None:
- coco_evaluator.update(res)
- # gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- if coco_evaluator is not None:
- coco_evaluator.synchronize_between_processes()
- # accumulate predictions from all images
- if coco_evaluator is not None:
- coco_evaluator.accumulate()
- coco_evaluator.summarize()
- stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
- if coco_evaluator is not None:
- if 'bbox' in postprocessors.keys():
- stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
- if 'segm' in postprocessors.keys():
- stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
- return stats, coco_evaluator, res_tracks
|