# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from ppdet.data.source.widerface import widerface_label import logging logger = logging.getLogger(__name__) __all__ = [ 'get_shrink', 'bbox_vote', 'save_widerface_bboxes', 'save_fddb_bboxes', 'to_chw_bgr', 'bbox2out', 'get_category_info', 'lmk2out' ] def to_chw_bgr(image): """ Transpose image from HWC to CHW and from RBG to BGR. Args: image (np.array): an image with HWC and RBG layout. """ # HWC to CHW if len(image.shape) == 3: image = np.swapaxes(image, 1, 2) image = np.swapaxes(image, 1, 0) # RBG to BGR image = image[[2, 1, 0], :, :] return image def bbox_vote(det): order = det[:, 4].ravel().argsort()[::-1] det = det[order, :] if det.shape[0] == 0: dets = np.array([[10, 10, 20, 20, 0.002]]) det = np.empty(shape=[0, 5]) while det.shape[0] > 0: # IOU area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1) xx1 = np.maximum(det[0, 0], det[:, 0]) yy1 = np.maximum(det[0, 1], det[:, 1]) xx2 = np.minimum(det[0, 2], det[:, 2]) yy2 = np.minimum(det[0, 3], det[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h o = inter / (area[0] + area[:] - inter) # nms merge_index = np.where(o >= 0.3)[0] det_accu = det[merge_index, :] det = np.delete(det, merge_index, 0) if merge_index.shape[0] <= 1: if det.shape[0] == 0: try: dets = np.row_stack((dets, det_accu)) except: dets = det_accu continue det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4)) max_score = np.max(det_accu[:, 4]) det_accu_sum = np.zeros((1, 5)) det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:]) det_accu_sum[:, 4] = max_score try: dets = np.row_stack((dets, det_accu_sum)) except: dets = det_accu_sum dets = dets[0:750, :] # Only keep 0.3 or more keep_index = np.where(dets[:, 4] >= 0.01)[0] dets = dets[keep_index, :] return dets def get_shrink(height, width): """ Args: height (int): image height. width (int): image width. """ # avoid out of memory max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5 max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5 def get_round(x, loc): str_x = str(x) if '.' in str_x: str_before, str_after = str_x.split('.') len_after = len(str_after) if len_after >= 3: str_final = str_before + '.' + str_after[0:loc] return float(str_final) else: return x max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3 if max_shrink >= 1.5 and max_shrink < 2: max_shrink = max_shrink - 0.1 elif max_shrink >= 2 and max_shrink < 3: max_shrink = max_shrink - 0.2 elif max_shrink >= 3 and max_shrink < 4: max_shrink = max_shrink - 0.3 elif max_shrink >= 4 and max_shrink < 5: max_shrink = max_shrink - 0.4 elif max_shrink >= 5: max_shrink = max_shrink - 0.5 elif max_shrink <= 0.1: max_shrink = 0.1 shrink = max_shrink if max_shrink < 1 else 1 return shrink, max_shrink def save_widerface_bboxes(image_path, bboxes_scores, output_dir): image_name = image_path.split('/')[-1] image_class = image_path.split('/')[-2] odir = os.path.join(output_dir, image_class) if not os.path.exists(odir): os.makedirs(odir) ofname = os.path.join(odir, '%s.txt' % (image_name[:-4])) f = open(ofname, 'w') f.write('{:s}\n'.format(image_class + '/' + image_name)) f.write('{:d}\n'.format(bboxes_scores.shape[0])) for box_score in bboxes_scores: xmin, ymin, xmax, ymax, score = box_score f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, ( xmax - xmin + 1), (ymax - ymin + 1), score)) f.close() logger.info("The predicted result is saved as {}".format(ofname)) def save_fddb_bboxes(bboxes_scores, output_dir, output_fname='pred_fddb_res.txt'): if not os.path.exists(output_dir): os.makedirs(output_dir) predict_file = os.path.join(output_dir, output_fname) f = open(predict_file, 'w') for image_path, dets in bboxes_scores.iteritems(): f.write('{:s}\n'.format(image_path)) f.write('{:d}\n'.format(dets.shape[0])) for box_score in dets: xmin, ymin, xmax, ymax, score = box_score width, height = xmax - xmin, ymax - ymin f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n' .format(xmin, ymin, width, height, score)) logger.info("The predicted result is saved as {}".format(predict_file)) return predict_file def get_category_info(anno_file=None, with_background=True, use_default_label=False): if use_default_label or anno_file is None \ or not os.path.exists(anno_file): logger.info("Not found annotation file {}, load " "wider-face categories.".format(anno_file)) return widerfaceall_category_info(with_background) else: logger.info("Load categories from {}".format(anno_file)) return get_category_info_from_anno(anno_file, with_background) def get_category_info_from_anno(anno_file, with_background=True): """ Get class id to category id map and category id to category name map from annotation file. Args: anno_file (str): annotation file path with_background (bool, default True): whether load background as class 0. """ cats = [] with open(anno_file) as f: for line in f.readlines(): cats.append(line.strip()) if cats[0] != 'background' and with_background: cats.insert(0, 'background') if cats[0] == 'background' and not with_background: cats = cats[1:] clsid2catid = {i: i for i in range(len(cats))} catid2name = {i: name for i, name in enumerate(cats)} return clsid2catid, catid2name def widerfaceall_category_info(with_background=True): """ Get class id to category id map and category id to category name map of mixup wider_face dataset Args: with_background (bool, default True): whether load background as class 0. """ label_map = widerface_label(with_background) label_map = sorted(label_map.items(), key=lambda x: x[1]) cats = [l[0] for l in label_map] if with_background: cats.insert(0, 'background') clsid2catid = {i: i for i in range(len(cats))} catid2name = {i: name for i, name in enumerate(cats)} return clsid2catid, catid2name def lmk2out(results, is_bbox_normalized=False): """ Args: results: request a dict, should include: `landmark`, `im_id`, if is_bbox_normalized=True, also need `im_shape`. is_bbox_normalized: whether or not landmark is normalized. """ xywh_res = [] for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]).flatten() if bboxes.shape == (1, 1) or bboxes is None: continue face_index = t['face_index'][0] prior_box = t['prior_boxes'][0] predict_lmk = t['landmark'][0] prior = np.reshape(prior_box, (-1, 4)) predictlmk = np.reshape(predict_lmk, (-1, 10)) k = 0 for a in range(len(lengths)): num = lengths[a] im_id = int(im_ids[a]) for i in range(num): score = bboxes[k][1] theindex = face_index[i][0] me_prior = prior[theindex, :] lmk_pred = predictlmk[theindex, :] prior_w = me_prior[2] - me_prior[0] prior_h = me_prior[3] - me_prior[1] prior_w_center = (me_prior[2] + me_prior[0]) / 2 prior_h_center = (me_prior[3] + me_prior[1]) / 2 lmk_decode = np.zeros((10)) for j in [0, 2, 4, 6, 8]: lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center for j in [1, 3, 5, 7, 9]: lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center im_shape = t['im_shape'][0][a].tolist() image_h, image_w = int(im_shape[0]), int(im_shape[1]) if is_bbox_normalized: lmk_decode = lmk_decode * np.array([ image_w, image_h, image_w, image_h, image_w, image_h, image_w, image_h, image_w, image_h ]) lmk_res = { 'image_id': im_id, 'landmark': lmk_decode, 'score': score, } xywh_res.append(lmk_res) k += 1 return xywh_res