# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from paddle.fluid.param_attr import ParamAttr from ppdet.core.workspace import register __all__ = ['VGG'] @register class VGG(object): """ VGG, see https://arxiv.org/abs/1409.1556 Args: depth (int): the VGG net depth (16 or 19) normalizations (list): params list of init scale in l2 norm, skip init scale if param is -1. with_extra_blocks (bool): whether or not extra blocks should be added extra_block_filters (list): in each extra block, params: [in_channel, out_channel, padding_size, stride_size, filter_size] """ def __init__(self, depth=16, with_extra_blocks=False, normalizations=[20., -1, -1, -1, -1, -1], extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3], [128, 256, 0, 1, 3], [128, 256, 0, 1, 3]]): assert depth in [16, 19], \ "depth {} not in [16, 19]" self.depth = depth self.depth_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]} self.with_extra_blocks = with_extra_blocks self.normalizations = normalizations self.extra_block_filters = extra_block_filters def __call__(self, input): layers = [] layers += self._vgg_block(input) if not self.with_extra_blocks: return layers[-1] layers += self._add_extras_block(layers[-1]) norm_cfg = self.normalizations for k, v in enumerate(layers): if not norm_cfg[k] == -1: layers[k] = self._l2_norm_scale(v, init_scale=norm_cfg[k]) return layers def _vgg_block(self, input): nums = self.depth_cfg[self.depth] vgg_base = [64, 128, 256, 512, 512] conv = input layers = [] for k, v in enumerate(vgg_base): conv = self._conv_block( conv, v, nums[k], name="conv{}_".format(k + 1)) layers.append(conv) if k == 4: conv = self._pooling_block(conv, 3, 1, pool_padding=1) else: conv = self._pooling_block(conv, 2, 2) fc6 = self._conv_layer(conv, 1024, 3, 1, 6, dilation=6, name="fc6") fc7 = self._conv_layer(fc6, 1024, 1, 1, 0, name="fc7") return [layers[3], fc7] def _add_extras_block(self, input): cfg = self.extra_block_filters conv = input layers = [] for k, v in enumerate(cfg): assert len(v) == 5, "extra_block_filters size not fix" conv = self._extra_block( conv, v[0], v[1], v[2], v[3], v[4], name="conv{}_".format(6 + k)) layers.append(conv) return layers def _conv_block(self, input, num_filter, groups, name=None): conv = input for i in range(groups): conv = self._conv_layer( input=conv, num_filters=num_filter, filter_size=3, stride=1, padding=1, act='relu', name=name + str(i + 1)) return conv def _extra_block(self, input, num_filters1, num_filters2, padding_size, stride_size, filter_size, name=None): # 1x1 conv conv_1 = self._conv_layer( input=input, num_filters=int(num_filters1), filter_size=1, stride=1, act='relu', padding=0, name=name + "1") # 3x3 conv conv_2 = self._conv_layer( input=conv_1, num_filters=int(num_filters2), filter_size=filter_size, stride=stride_size, act='relu', padding=padding_size, name=name + "2") return conv_2 def _conv_layer(self, input, num_filters, filter_size, stride, padding, dilation=1, act='relu', use_cudnn=True, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, dilation=dilation, act=act, use_cudnn=use_cudnn, param_attr=ParamAttr(name=name + "_weights"), bias_attr=ParamAttr(name=name + "_biases"), name=name + '.conv2d.output.1') return conv def _pooling_block(self, conv, pool_size, pool_stride, pool_padding=0, ceil_mode=True): pool = fluid.layers.pool2d( input=conv, pool_size=pool_size, pool_type='max', pool_stride=pool_stride, pool_padding=pool_padding, ceil_mode=ceil_mode) return pool def _l2_norm_scale(self, input, init_scale=1.0, channel_shared=False): from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.initializer import Constant helper = LayerHelper("Scale") l2_norm = fluid.layers.l2_normalize( input, axis=1) # l2 norm along channel shape = [1] if channel_shared else [input.shape[1]] scale = helper.create_parameter( attr=helper.param_attr, shape=shape, dtype=input.dtype, default_initializer=Constant(init_scale)) out = fluid.layers.elementwise_mul( x=l2_norm, y=scale, axis=-1 if channel_shared else 1, name="conv4_3_norm_scale") return out