// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include namespace PaddleDetection { // Object for storing all preprocessed data class ImageBlob { public: // Original image width and height std::vector ori_im_size_; // Buffer for image data after preprocessing std::vector im_data_; // Original image width, height, shrink in float format std::vector ori_im_size_f_; // Evaluation image width and height std::vector eval_im_size_f_; // Scale factor for image size to origin image size std::vector scale_factor_f_; }; // Abstraction of preprocessing opration class class PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::string& arch) = 0; virtual void Run(cv::Mat* im, ImageBlob* data) = 0; }; class InitInfo : public PreprocessOp{ public: virtual void Init(const YAML::Node& item, const std::string& arch) {} virtual void Run(cv::Mat* im, ImageBlob* data); }; class Normalize : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::string& arch) { mean_ = item["mean"].as>(); scale_ = item["std"].as>(); is_channel_first_ = item["is_channel_first"].as(); is_scale_ = item["is_scale"].as(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: // CHW or HWC bool is_channel_first_; bool is_scale_; std::vector mean_; std::vector scale_; }; class Permute : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::string& arch) { to_bgr_ = item["to_bgr"].as(); is_channel_first_ = item["channel_first"].as(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: // RGB to BGR bool to_bgr_; // CHW or HWC bool is_channel_first_; }; class Resize : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::string& arch) { arch_ = arch; interp_ = item["interp"].as(); max_size_ = item["max_size"].as(); if (item["image_shape"].IsDefined()) { image_shape_ = item["image_shape"].as>(); } target_size_ = item["target_size"].as(); } // Compute best resize scale for x-dimension, y-dimension std::pair GenerateScale(const cv::Mat& im); virtual void Run(cv::Mat* im, ImageBlob* data); private: std::string arch_; int interp_; int max_size_; int target_size_; std::vector image_shape_; }; // Models with FPN need input shape % stride == 0 class PadStride : public PreprocessOp { public: virtual void Init(const YAML::Node& item, const std::string& arch) { stride_ = item["stride"].as(); } virtual void Run(cv::Mat* im, ImageBlob* data); private: int stride_; }; class Preprocessor { public: void Init(const YAML::Node& config_node, const std::string& arch) { arch_ = arch; // initialize image info at first ops_["InitInfo"] = std::make_shared(); for (const auto& item : config_node) { auto op_name = item["type"].as(); ops_[op_name] = CreateOp(op_name); ops_[op_name]->Init(item, arch); } } std::shared_ptr CreateOp(const std::string& name) { if (name == "Resize") { return std::make_shared(); } else if (name == "Permute") { return std::make_shared(); } else if (name == "Normalize") { return std::make_shared(); } else if (name == "PadStride") { return std::make_shared(); } return nullptr; } void Run(cv::Mat* im, ImageBlob* data); public: static const std::vector RUN_ORDER; private: std::string arch_; std::unordered_map> ops_; }; } // namespace PaddleDetection