architecture: YOLOv3 use_gpu: true max_iters: 450000 log_iter: 100 save_dir: output snapshot_iter: 10000 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar weights: output/ppyolov2_r101vd_dcn/model_final num_classes: 80 use_fine_grained_loss: true use_ema: true ema_decay: 0.9998 YOLOv3: backbone: ResNet yolo_head: YOLOv3PANHead use_fine_grained_loss: true ResNet: norm_type: sync_bn freeze_at: 0 freeze_norm: false norm_decay: 0. depth: 101 feature_maps: [3, 4, 5] variant: d dcn_v2_stages: [5] YOLOv3PANHead: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] norm_decay: 0. iou_aware: true iou_aware_factor: 0.5 scale_x_y: 1.05 spp: true yolo_loss: YOLOv3Loss nms: MatrixNMS drop_block: true YOLOv3Loss: ignore_thresh: 0.7 scale_x_y: 1.05 label_smooth: false use_fine_grained_loss: true iou_loss: IouLoss iou_aware_loss: IouAwareLoss IouLoss: loss_weight: 2.5 max_height: 768 max_width: 768 IouAwareLoss: loss_weight: 1.0 max_height: 768 max_width: 768 MatrixNMS: background_label: -1 keep_top_k: 100 normalized: false score_threshold: 0.01 post_threshold: 0.01 LearningRate: base_lr: 0.005 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 300000 - !LinearWarmup start_factor: 0. steps: 4000 OptimizerBuilder: clip_grad_by_norm: 35. optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'ppyolov2_reader.yml'