architecture: TTFNet pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams norm_type: sync_bn use_ema: true ema_decay: 0.9998 TTFNet: backbone: ResNet neck: TTFFPN ttf_head: TTFHead post_process: BBoxPostProcess ResNet: depth: 50 variant: d return_idx: [0, 1, 2, 3] freeze_at: -1 norm_decay: 0. variant: d dcn_v2_stages: [1, 2, 3] TTFFPN: planes: [256, 128, 64] shortcut_num: [3, 2, 1] TTFHead: dcn_head: true hm_loss: name: CTFocalLoss loss_weight: 1. wh_loss: name: GIoULoss loss_weight: 5. reduction: sum BBoxPostProcess: decode: name: TTFBox max_per_img: 100 score_thresh: 0.01 down_ratio: 4