# This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT. _BASE_: [ 'detector/yolov3_darknet53_40e_608x608_mot17half.yml', '_base_/mot17.yml', '_base_/yolov3_mot_reader_608x608.yml' ] weights: output/bytetrack_yolov3/model_final log_iter: 20 snapshot_epoch: 2 metric: MOT # eval/infer mode num_classes: 1 architecture: ByteTrack pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolov3_darknet53_270e_coco.pdparams ByteTrack: detector: YOLOv3 # General YOLOv3 version reid: None tracker: JDETracker det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/yolov3_darknet53_40e_608x608_mot17half.pdparams reid_weights: None YOLOv3: backbone: DarkNet neck: YOLOv3FPN yolo_head: YOLOv3Head post_process: BBoxPostProcess # Tracking requires higher quality boxes, so NMS score_threshold will be higher BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.45 nms_top_k: 1000 # BYTETracker JDETracker: use_byte: True match_thres: 0.9 conf_thres: 0.2 low_conf_thres: 0.1 min_box_area: 100 vertical_ratio: 1.6 # for pedestrian