# ByteTrack-TensorRT in C++ ## Installation Install opencv with ```sudo apt-get install libopencv-dev``` (we don't need a higher version of opencv like v3.3+). Install eigen-3.3.9 [[google]](https://drive.google.com/file/d/1rqO74CYCNrmRAg8Rra0JP3yZtJ-rfket/view?usp=sharing), [[baidu(code:ueq4)]](https://pan.baidu.com/s/15kEfCxpy-T7tz60msxxExg). ```shell unzip eigen-3.3.9.zip cd eigen-3.3.9 mkdir build cd build cmake .. sudo make install ``` ## Prepare serialized engine file Follow the TensorRT Python demo to convert and save the serialized engine file. Check the 'model_trt.engine' file, which will be automatically saved at the YOLOX_output dir. ## Build the demo You should set the TensorRT path and CUDA path in CMakeLists.txt. For bytetrack_s model, we set the input frame size 1088 x 608. For bytetrack_m, bytetrack_l, bytetrack_x models, we set the input frame size 1440 x 800. You can modify the INPUT_W and INPUT_H in src/bytetrack.cpp ```c++ static const int INPUT_W = 1088; static const int INPUT_H = 608; ``` You can first build the demo: ```shell cd /deploy/TensorRT/cpp mkdir build cd build cmake .. make ``` Then you can run the demo with **200 FPS**: ```shell ./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4 ``` (If you find the output video lose some frames, you can convert the input video by running: ```shell cd python3 tools/convert_video.py ``` to generate an appropriate input video for TensorRT C++ demo. )