English | [简体中文](README.md)
# Mobile Model Zoo
## Models
This directory contains models optimized for mobile applications, at present the following models included:
| Backbone | Architecture | Input | Image/gpu [1](#gpu) | Lr schd | Box AP | Download | PaddleLite Model Download |
| :----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :------- | :------------------------ |
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.pdparam) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar) |
| MobileNetV3 Small | SSDLite Quant [2](#quant) | 320 | 64 | 400K (cosine) | 15.4 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small_quant.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small_quant.tar) |
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 23.3 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.pdparam) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar) |
| MobileNetV3 Large | SSDLite Quant [2](#quant) | 320 | 64 | 400K (cosine) | 22.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large_quant.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large_quant.tar) |
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar) |
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar) |
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar) |
| MobileNetV3 Large | YOLOv3 Prune 2 | 320 | 8 | - | 24.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar) |
**Notes**:
- [1] All models are trained on 8 GPUs.
- [2] See the note section on [SSDLite quantization](#Notes-on-SSDLite-quant)。
- [3] See the note section on [how YOLO head is pruned](#Notes-on-YOLOv3-pruning).
## Benchmarks Results
- Models are benched on following chipsets with [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (to be released)
- Qualcomm Snapdragon 625
- Qualcomm Snapdragon 835
- Qualcomm Snapdragon 845
- Qualcomm Snapdragon 855
- HiSilicon Kirin 970
- HiSilicon Kirin 980
- With 1 CPU thread (latency numbers are in ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
| SSDLite Large | 289.071 | 134.408 | 91.933 | 48.2206 | 144.914 | 55.1186 |
| SSDLite Large Quant | | | | | | |
| SSDLite Small | 122.932 | 57.1914 | 41.003 | 22.0694 | 61.5468 | 25.2106 |
| SSDLite Small Quant | | | | | | |
| YOLOv3 baseline | 1082.5 | 435.77 | 317.189 | 155.948 | 536.987 | 178.999 |
| YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 |
| Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 |
| Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 |
- With 4 CPU threads (latency numbers are in ms)
| | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 |
|------------------|---------|---------|---------|---------|-----------|-----------|
| SSDLite Large | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598 | 24.5318 |
| SSDLite Large Quant | | | | | | |
| SSDLite Small | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946 | 16.7158 |
| SSDLite Small Quant | | | | | | |
| YOLOv3 baseline | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263 | 126.435 |
| YOLOv3 prune | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722 | 31.201 |
| Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046 | 36.9486 |
| Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 |
## Notes on SSDLite quantization
We use a complete quantitative training method to train the SSDLite model. It is trained for a total of 400,000 rounds with the 8-card GPU. We freeze `res_conv1` and `se_block`. The command used is listed bellow:
```shell
python slim/quantization/train.py --not_quant_pattern res_conv1 se_block \
-c configs/ssd/ssdlite_mobilenet_v3_large.yml \
--eval
```
For more quantization tutorials, please refer to [Model Quantization Compression Tutorial](../../docs/advanced_tutorials/slim/quantization/QUANTIZATION.md)
## Notes on YOLOv3 pruning
We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320\*320 input).
The following configurations can be used for pruning:
- Prune with fixed ratio, overall prune ratios is 86%
```shell
--pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
--pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
```
- Prune filters using [FPGM](https://arxiv.org/abs/1811.00250) algorithm:
```shell
--prune_criterion=geometry_median
```
## Upcoming
- [ ] More models configurations
- [ ] Quantized models