# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec from ..backbones.lcnet import DepthwiseSeparable from .csp_pan import ConvBNLayer, Channel_T, DPModule __all__ = ['LCPAN'] @register @serializable class LCPAN(nn.Layer): """Path Aggregation Network with LCNet module. Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) kernel_size (int): The conv2d kernel size of this Module. num_features (int): Number of output features of CSPPAN module. num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1 use_depthwise (bool): Whether to depthwise separable convolution in blocks. Default: True """ def __init__(self, in_channels, out_channels, kernel_size=5, num_features=3, use_depthwise=True, act='hard_swish', spatial_scales=[0.125, 0.0625, 0.03125]): super(LCPAN, self).__init__() self.conv_t = Channel_T(in_channels, out_channels, act=act) in_channels = [out_channels] * len(spatial_scales) self.in_channels = in_channels self.out_channels = out_channels self.spatial_scales = spatial_scales self.num_features = num_features conv_func = DPModule if use_depthwise else ConvBNLayer NET_CONFIG = { #k, in_c, out_c, stride, use_se "block1": [ [kernel_size, out_channels * 2, out_channels * 2, 1, False], [kernel_size, out_channels * 2, out_channels, 1, False], ], "block2": [ [kernel_size, out_channels * 2, out_channels * 2, 1, False], [kernel_size, out_channels * 2, out_channels, 1, False], ] } if self.num_features == 4: self.first_top_conv = conv_func( in_channels[0], in_channels[0], kernel_size, stride=2, act=act) self.second_top_conv = conv_func( in_channels[0], in_channels[0], kernel_size, stride=2, act=act) self.spatial_scales.append(self.spatial_scales[-1] / 2) # build top-down blocks self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.top_down_blocks = nn.LayerList() for idx in range(len(in_channels) - 1, 0, -1): self.top_down_blocks.append( nn.Sequential(* [ DepthwiseSeparable( num_channels=in_c, num_filters=out_c, dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[ "block1"]) ])) # build bottom-up blocks self.downsamples = nn.LayerList() self.bottom_up_blocks = nn.LayerList() for idx in range(len(in_channels) - 1): self.downsamples.append( conv_func( in_channels[idx], in_channels[idx], kernel_size=kernel_size, stride=2, act=act)) self.bottom_up_blocks.append( nn.Sequential(* [ DepthwiseSeparable( num_channels=in_c, num_filters=out_c, dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[ "block2"]) ])) def forward(self, inputs): """ Args: inputs (tuple[Tensor]): input features. Returns: tuple[Tensor]: CSPPAN features. """ assert len(inputs) == len(self.in_channels) inputs = self.conv_t(inputs) # top-down path inner_outs = [inputs[-1]] for idx in range(len(self.in_channels) - 1, 0, -1): feat_heigh = inner_outs[0] feat_low = inputs[idx - 1] upsample_feat = self.upsample(feat_heigh) inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx]( paddle.concat([upsample_feat, feat_low], 1)) inner_outs.insert(0, inner_out) # bottom-up path outs = [inner_outs[0]] for idx in range(len(self.in_channels) - 1): feat_low = outs[-1] feat_height = inner_outs[idx + 1] downsample_feat = self.downsamples[idx](feat_low) out = self.bottom_up_blocks[idx](paddle.concat( [downsample_feat, feat_height], 1)) outs.append(out) top_features = None if self.num_features == 4: top_features = self.first_top_conv(inputs[-1]) top_features = top_features + self.second_top_conv(outs[-1]) outs.append(top_features) return tuple(outs) @property def out_shape(self): return [ ShapeSpec( channels=self.out_channels, stride=1. / s) for s in self.spatial_scales ] @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], }