# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import base64 import json import cv2 import numpy as np import paddle.nn as nn import paddlehub as hub from paddlehub.module.module import moduleinfo, serving import solov2_blazeface.processor as P def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data @moduleinfo( name="solov2_blazeface", type="CV/image_editing", author="paddlepaddle", author_email="", summary="solov2_blaceface is a segmentation and face detection model based on solov2 and blaceface.", version="1.0.0") class SoloV2BlazeFaceModel(nn.Layer): """ SoloV2BlazeFaceModel """ def __init__(self, use_gpu=True): super(SoloV2BlazeFaceModel, self).__init__() self.solov2 = hub.Module(name='solov2', use_gpu=use_gpu) self.blaceface = hub.Module(name='blazeface', use_gpu=use_gpu) def predict(self, image, background, beard_file=None, glasses_file=None, hat_file=None, visualization=False, threshold=0.5): # instance segmention solov2_output = self.solov2.predict( image=image, threshold=threshold, visualization=visualization) # Set background pixel to 0 im_segm, x0, x1, y0, y1, _, _, _, _, flag_seg = P.visualize_box_mask( image, solov2_output, threshold=threshold) if flag_seg == 0: return im_segm h, w = y1 - y0, x1 - x0 back_json = background[:-3] + 'json' stand_box = json.load(open(back_json)) stand_box = stand_box['outputs']['object'][0]['bndbox'] stand_xmin, stand_xmax, stand_ymin, stand_ymax = stand_box[ 'xmin'], stand_box['xmax'], stand_box['ymin'], stand_box['ymax'] im_path = np.asarray(im_segm) # face detection blaceface_output = self.blaceface.predict( image=im_path, threshold=threshold, visualization=visualization) im_face_kp, p_left, p_right, p_up, p_bottom, h_xmin, h_ymin, h_xmax, h_ymax, flag_face = P.visualize_box_mask( im_path, blaceface_output, threshold=threshold, beard_file=beard_file, glasses_file=glasses_file, hat_file=hat_file) if flag_face == 1: if x0 > h_xmin: shift_x_ = x0 - h_xmin else: shift_x_ = 0 if y0 > h_ymin: shift_y_ = y0 - h_ymin else: shift_y_ = 0 h += p_up + p_bottom + shift_y_ w += p_left + p_right + shift_x_ x0 = min(x0, h_xmin) y0 = min(y0, h_ymin) x1 = max(x1, h_xmax) + shift_x_ + p_left + p_right y1 = max(y1, h_ymax) + shift_y_ + p_up + p_bottom # Fill the background image cropped = im_face_kp.crop((x0, y0, x1, y1)) resize_scale = min((stand_xmax - stand_xmin) / (x1 - x0), (stand_ymax - stand_ymin) / (y1 - y0)) h, w = int(h * resize_scale), int(w * resize_scale) cropped = cropped.resize((w, h), cv2.INTER_LINEAR) cropped = cv2.cvtColor(np.asarray(cropped), cv2.COLOR_RGB2BGR) shift_x = int((stand_xmax - stand_xmin - cropped.shape[1]) / 2) shift_y = int((stand_ymax - stand_ymin - cropped.shape[0]) / 2) out_image = cv2.imread(background) e2gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(e2gray, 1, 255, cv2.THRESH_BINARY_INV) mask_inv = cv2.bitwise_not(mask) roi = out_image[stand_ymin + shift_y:stand_ymin + cropped.shape[ 0] + shift_y, stand_xmin + shift_x:stand_xmin + cropped.shape[1] + shift_x] person_bg = cv2.bitwise_and(roi, roi, mask=mask) element_fg = cv2.bitwise_and(cropped, cropped, mask=mask_inv) dst = cv2.add(person_bg, element_fg) out_image[stand_ymin + shift_y:stand_ymin + cropped.shape[ 0] + shift_y, stand_xmin + shift_x:stand_xmin + cropped.shape[1] + shift_x] = dst return out_image @serving def serving_method(self, images, background, beard, glasses, hat, **kwargs): """ Run as a service. """ final = {} background_path = os.path.join( self.directory, 'element_source/background/{}.png'.format(background)) beard_path = os.path.join(self.directory, 'element_source/beard/{}.png'.format(beard)) glasses_path = os.path.join( self.directory, 'element_source/glasses/{}.png'.format(glasses)) hat_path = os.path.join(self.directory, 'element_source/hat/{}.png'.format(hat)) images_decode = base64_to_cv2(images[0]) output = self.predict( image=images_decode, background=background_path, hat_file=hat_path, beard_file=beard_path, glasses_file=glasses_path, **kwargs) final['image'] = cv2_to_base64(output) return final