简体中文 | [English](README.md) # MCFairMOT (Multi-class FairMOT) ## 内容 - [简介](#简介) - [模型库](#模型库) - [快速开始](#快速开始) - [引用](#引用) ## 内容 MCFairMOT是[FairMOT](https://arxiv.org/abs/2004.01888)的多类别扩展版本。 ### PP-Tracking 实时多目标跟踪系统 此外,PaddleDetection还提供了[PP-Tracking](../../../deploy/pptracking/README.md)实时多目标跟踪系统。PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统,具有模型丰富、应用广泛和部署高效三大优势。 PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式,针对实际业务的难点和痛点,提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用,部署方式支持API调用和GUI可视化界面,部署语言支持Python和C++,部署平台环境支持Linux、NVIDIA Jetson等。 ### AI Studio公开项目案例 PP-Tracking 提供了AI Studio公开项目案例,教程请参考[PP-Tracking之手把手玩转多目标跟踪](https://aistudio.baidu.com/aistudio/projectdetail/3022582)。 ## 模型库 ### MCFairMOT 在VisDrone2019 MOT val-set上结果 | 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FPS | 下载链接 | 配置文件 | | :--------------| :------- | :----: | :----: | :---: | :------: | :----: |:----: | | DLA-34 | 1088x608 | 24.3 | 41.6 | 2314 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams) | [配置文件](./mcfairmot_dla34_30e_1088x608_visdrone.yml) | | HRNetV2-W18 | 1088x608 | 20.4 | 39.9 | 2603 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.pdparams) | [配置文件](./mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.yml) | | HRNetV2-W18 | 864x480 | 18.2 | 38.7 | 2416 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone.pdparams) | [配置文件](./mcfairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone.yml) | | HRNetV2-W18 | 576x320 | 12.0 | 33.8 | 2178 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone.pdparams) | [配置文件](./mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone.yml) | **注意:** - MOTA是VisDrone2019 MOT数据集10类目标的平均MOTA, 其值也等于所有评估的视频序列的平均MOTA,此处提供数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/mot/visdrone_mcmot.zip)。 - MCFairMOT模型均使用4个GPU进行训练,训练30个epoch。DLA-34骨干网络的每个GPU上batch size为6,HRNetV2-W18骨干网络的每个GPU上batch size为8。 ### MCFairMOT 在VisDrone Vehicle val-set上结果 | 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FPS | 下载链接 | 配置文件 | | :--------------| :------- | :----: | :----: | :---: | :------: | :----: |:----: | | DLA-34 | 1088x608 | 37.7 | 56.8 | 199 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.pdparams) | [配置文件](./mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.yml) | | HRNetV2-W18 | 1088x608 | 35.6 | 56.3 | 190 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_vehicle_bytetracker.pdparams) | [配置文件](./mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_vehicle_bytetracker.yml) | **注意:** - MOTA是VisDrone Vehicle数据集4类车辆目标的平均MOTA, 该数据集是VisDrone数据集中抽出4类车辆类别组成的,此处提供数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/mot/visdrone_mcmot_vehicle.zip)。 - MCFairMOT模型此处使用的跟踪器是使用的ByteTracker。 ### MCFairMOT 在VisDrone Vehicle val-set上离线量化结果 | 骨干网络 | 压缩策略 | 预测时延(T4) |预测时延(V100)| 配置文件 |压缩算法配置文件 | | :--------------| :------- | :------: | :----: | :----: | :----: | | DLA-34 | baseline | 41.3 | 21.9 |[配置文件](./mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.yml)| - | | DLA-34 | 离线量化 | 37.8 | 21.2 |[配置文件](./mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.yml)|[配置文件](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/configs/slim/post_quant/mcfairmot_ptq.yml)| ## 快速开始 ### 1. 训练 使用4个GPU通过如下命令一键式启动训练 ```bash python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml ``` ### 2. 评估 使用单张GPU通过如下命令一键式启动评估 ```bash # 使用PaddleDetection发布的权重 CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams # 使用训练保存的checkpoint CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=output/mcfairmot_dla34_30e_1088x608_visdrone/model_final.pdparams ``` **注意:** - 默认评估的是VisDrone2019 MOT val-set数据集, 如需换评估数据集可参照以下代码修改`configs/datasets/mcmot.yml`: ``` EvalMOTDataset: !MOTImageFolder dataset_dir: dataset/mot data_root: your_dataset/images/val keep_ori_im: False # set True if save visualization images or video ``` - 多类别跟踪结果会存于`{output_dir}/mot_results/`中,里面每个视频序列对应一个txt,每个txt文件每行信息是`frame,id,x1,y1,w,h,score,cls_id,-1,-1`, 此外`{output_dir}`可通过`--output_dir`设置。 ### 3. 预测 使用单个GPU通过如下命令预测一个视频,并保存为视频 ```bash # 预测一个视频 CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams --video_file={your video name}.mp4 --save_videos ``` **注意:** - 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`。 ### 4. 导出预测模型 ```bash CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams ``` ### 5. 用导出的模型基于Python去预测 ```bash python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/mcfairmot_dla34_30e_1088x608_visdrone --video_file={your video name}.mp4 --device=GPU --save_mot_txts ``` **注意:** - 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。 - 多类别跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,cls_id,-1,-1`。 ### 6. 离线量化 使用 VisDrone Vehicle val-set 对离线量化模型进行校准,运行方式: ```bash CUDA_VISIBLE_DEVICES=0 python3.7 tools/post_quant.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.yml --slim_config=configs/slim/post_quant/mcfairmot_ptq.yml ``` **注意:** - 离线量化默认使用的是VisDrone Vehicle val-set数据集以及4类车辆跟踪模型。 ## 引用 ``` @article{zhang2020fair, title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking}, author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu}, journal={arXiv preprint arXiv:2004.01888}, year={2020} } @ARTICLE{9573394, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detection and Tracking Meet Drones Challenge}, year={2021}, volume={}, number={}, pages={1-1}, doi={10.1109/TPAMI.2021.3119563} } @article{zhang2021bytetrack, title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box}, author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang}, journal={arXiv preprint arXiv:2110.06864}, year={2021} } ```