# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import numpy as np __all__ = ["bbox_overlaps", "box_to_delta"] logger = logging.getLogger(__name__) def bbox_overlaps(boxes_1, boxes_2): ''' bbox_overlaps boxes_1: x1, y, x2, y2 boxes_2: x1, y, x2, y2 ''' assert boxes_1.shape[1] == 4 and boxes_2.shape[1] == 4 num_1 = boxes_1.shape[0] num_2 = boxes_2.shape[0] x1_1 = boxes_1[:, 0:1] y1_1 = boxes_1[:, 1:2] x2_1 = boxes_1[:, 2:3] y2_1 = boxes_1[:, 3:4] area_1 = (x2_1 - x1_1 + 1) * (y2_1 - y1_1 + 1) x1_2 = boxes_2[:, 0].transpose() y1_2 = boxes_2[:, 1].transpose() x2_2 = boxes_2[:, 2].transpose() y2_2 = boxes_2[:, 3].transpose() area_2 = (x2_2 - x1_2 + 1) * (y2_2 - y1_2 + 1) xx1 = np.maximum(x1_1, x1_2) yy1 = np.maximum(y1_1, y1_2) xx2 = np.minimum(x2_1, x2_2) yy2 = np.minimum(y2_1, y2_2) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (area_1 + area_2 - inter) return ovr def box_to_delta(ex_boxes, gt_boxes, weights): """ box_to_delta """ ex_w = ex_boxes[:, 2] - ex_boxes[:, 0] + 1 ex_h = ex_boxes[:, 3] - ex_boxes[:, 1] + 1 ex_ctr_x = ex_boxes[:, 0] + 0.5 * ex_w ex_ctr_y = ex_boxes[:, 1] + 0.5 * ex_h gt_w = gt_boxes[:, 2] - gt_boxes[:, 0] + 1 gt_h = gt_boxes[:, 3] - gt_boxes[:, 1] + 1 gt_ctr_x = gt_boxes[:, 0] + 0.5 * gt_w gt_ctr_y = gt_boxes[:, 1] + 0.5 * gt_h dx = (gt_ctr_x - ex_ctr_x) / ex_w / weights[0] dy = (gt_ctr_y - ex_ctr_y) / ex_h / weights[1] dw = (np.log(gt_w / ex_w)) / weights[2] dh = (np.log(gt_h / ex_h)) / weights[3] targets = np.vstack([dx, dy, dw, dh]).transpose() return targets