// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "paddle_api.h" // NOLINT using namespace paddle::lite_api; // NOLINT using namespace std; struct Object { cv::Rect rec; int class_id; float prob; }; // Object for storing all preprocessed data struct ImageBlob { // image width and height std::vector im_shape_; // Buffer for image data after preprocessing const float* im_data_; std::vector mean_; std::vector scale_; }; void PrintBenchmarkLog(std::vector det_time, std::map config, int img_num) { std::cout << "----------------- Config info ------------------" << std::endl; std::cout << "runtime_device: armv8" << std::endl; std::cout << "precision: " << config.at("precision") << std::endl; std::cout << "num_threads: " << config.at("num_threads") << std::endl; std::cout << "---------------- Data info ---------------------" << std::endl; std::cout << "batch_size: " << 1 << std::endl; std::cout << "---------------- Model info --------------------" << std::endl; std::cout << "Model_name: " << config.at("model_file") << std::endl; std::cout << "---------------- Perf info ---------------------" << std::endl; std::cout << "Total number of predicted data: " << img_num << " and total time spent(s): " << std::accumulate(det_time.begin(), det_time.end(), 0) << std::endl; std::cout << "preproce_time(ms): " << det_time[0] / img_num << ", inference_time(ms): " << det_time[1] / img_num << ", postprocess_time(ms): " << det_time[2] << std::endl; } std::vector LoadLabels(const std::string &path) { std::ifstream file; std::vector labels; file.open(path); while (file) { std::string line; std::getline(file, line); std::string::size_type pos = line.find(" "); if (pos != std::string::npos) { line = line.substr(pos); } labels.push_back(line); } file.clear(); file.close(); return labels; } std::vector ReadDict(std::string path) { std::ifstream in(path); std::string filename; std::string line; std::vector m_vec; if (in) { while (getline(in, line)) { m_vec.push_back(line); } } else { std::cout << "no such file" << std::endl; } return m_vec; } std::vector split(const std::string &str, const std::string &delim) { std::vector res; if ("" == str) return res; char *strs = new char[str.length() + 1]; std::strcpy(strs, str.c_str()); char *d = new char[delim.length() + 1]; std::strcpy(d, delim.c_str()); char *p = std::strtok(strs, d); while (p) { string s = p; res.push_back(s); p = std::strtok(NULL, d); } return res; } std::map LoadConfigTxt(std::string config_path) { auto config = ReadDict(config_path); std::map dict; for (int i = 0; i < config.size(); i++) { std::vector res = split(config[i], " "); dict[res[0]] = res[1]; } return dict; } void PrintConfig(const std::map &config) { std::cout << "=======PaddleDetection lite demo config======" << std::endl; for (auto iter = config.begin(); iter != config.end(); iter++) { std::cout << iter->first << " : " << iter->second << std::endl; } std::cout << "===End of PaddleDetection lite demo config===" << std::endl; } // fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up void neon_mean_scale(const float* din, float* dout, int size, const std::vector mean, const std::vector scale) { if (mean.size() != 3 || scale.size() != 3) { std::cerr << "[ERROR] mean or scale size must equal to 3\n"; exit(1); } float32x4_t vmean0 = vdupq_n_f32(mean[0]); float32x4_t vmean1 = vdupq_n_f32(mean[1]); float32x4_t vmean2 = vdupq_n_f32(mean[2]); float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]); float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]); float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]); float* dout_c0 = dout; float* dout_c1 = dout + size; float* dout_c2 = dout + size * 2; int i = 0; for (; i < size - 3; i += 4) { float32x4x3_t vin3 = vld3q_f32(din); float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0); float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1); float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2); float32x4_t vs0 = vmulq_f32(vsub0, vscale0); float32x4_t vs1 = vmulq_f32(vsub1, vscale1); float32x4_t vs2 = vmulq_f32(vsub2, vscale2); vst1q_f32(dout_c0, vs0); vst1q_f32(dout_c1, vs1); vst1q_f32(dout_c2, vs2); din += 12; dout_c0 += 4; dout_c1 += 4; dout_c2 += 4; } for (; i < size; i++) { *(dout_c0++) = (*(din++) - mean[0]) * scale[0]; *(dout_c0++) = (*(din++) - mean[1]) * scale[1]; *(dout_c0++) = (*(din++) - mean[2]) * scale[2]; } } std::vector visualize_result( const float* data, int count, float thresh, cv::Mat& image, const std::vector &class_names) { if (data == nullptr) { std::cerr << "[ERROR] data can not be nullptr\n"; exit(1); } std::vector rect_out; for (int iw = 0; iw < count; iw++) { int oriw = image.cols; int orih = image.rows; if (data[1] > thresh) { Object obj; int x = static_cast(data[2]); int y = static_cast(data[3]); int w = static_cast(data[4] - data[2] + 1); int h = static_cast(data[5] - data[3] + 1); cv::Rect rec_clip = cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows); obj.class_id = static_cast(data[0]); obj.prob = data[1]; obj.rec = rec_clip; if (w > 0 && h > 0 && obj.prob <= 1) { rect_out.push_back(obj); cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA); std::string str_prob = std::to_string(obj.prob); std::string text = std::string(class_names[obj.class_id]) + ": " + str_prob.substr(0, str_prob.find(".") + 4); int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL; double font_scale = 1.f; int thickness = 1; cv::Size text_size = cv::getTextSize(text, font_face, font_scale, thickness, nullptr); float new_font_scale = w * 0.5 * font_scale / text_size.width; text_size = cv::getTextSize( text, font_face, new_font_scale, thickness, nullptr); cv::Point origin; origin.x = x + 3; origin.y = y + text_size.height + 3; cv::putText(image, text, origin, font_face, new_font_scale, cv::Scalar(0, 255, 255), thickness, cv::LINE_AA); std::cout << "detection, image size: " << image.cols << ", " << image.rows << ", detect object: " << class_names[obj.class_id] << ", score: " << obj.prob << ", location: x=" << x << ", y=" << y << ", width=" << w << ", height=" << h << std::endl; } } data += 6; } return rect_out; } // Load Model and create model predictor std::shared_ptr LoadModel(std::string model_file, int num_theads) { MobileConfig config; config.set_threads(num_theads); config.set_model_from_file(model_file); std::shared_ptr predictor = CreatePaddlePredictor(config); return predictor; } ImageBlob prepare_imgdata(const cv::Mat& img, std::map config) { ImageBlob img_data; std::vector target_size_; std::vector size_str = split(config.at("Resize"), ","); transform(size_str.begin(), size_str.end(), back_inserter(target_size_), [](std::string const& s){return stoi(s);}); int width = target_size_[0]; int height = target_size_[1]; img_data.im_shape_ = { static_cast(target_size_[0]), static_cast(target_size_[1]) }; std::vector mean_; std::vector scale_; std::vector mean_str = split(config.at("mean"), ","); std::vector std_str = split(config.at("std"), ","); transform(mean_str.begin(), mean_str.end(), back_inserter(mean_), [](std::string const& s){return stof(s);}); transform(std_str.begin(), std_str.end(), back_inserter(scale_), [](std::string const& s){return stof(s);}); img_data.mean_ = mean_; img_data.scale_ = scale_; return img_data; } void preprocess(const cv::Mat& img, const ImageBlob img_data, float* data) { cv::Mat rgb_img; cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB); cv::resize( rgb_img, rgb_img, cv::Size(img_data.im_shape_[0],img_data.im_shape_[1]), 0.f, 0.f, cv::INTER_CUBIC); cv::Mat imgf; rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f); const float* dimg = reinterpret_cast(imgf.data); neon_mean_scale( dimg, data, int(img_data.im_shape_[0] * img_data.im_shape_[1]), img_data.mean_, img_data.scale_); } void RunModel(std::map config, std::string img_path, const int repeats, std::vector* times) { std::string model_file = config.at("model_file"); std::string label_path = config.at("label_path"); // Load Labels std::vector class_names = LoadLabels(label_path); auto predictor = LoadModel(model_file, stoi(config.at("num_threads"))); cv::Mat img = imread(img_path, cv::IMREAD_COLOR); auto img_data = prepare_imgdata(img, config); auto preprocess_start = std::chrono::steady_clock::now(); // 1. Prepare input data from image // input 0 std::unique_ptr input_tensor0(std::move(predictor->GetInput(0))); input_tensor0->Resize({1, 3, img_data.im_shape_[0], img_data.im_shape_[1]}); auto* data0 = input_tensor0->mutable_data(); preprocess(img, img_data, data0); // input1 std::unique_ptr input_tensor1(std::move(predictor->GetInput(1))); input_tensor1->Resize({1, 2}); auto* data1 = input_tensor1->mutable_data(); data1[0] = img_data.im_shape_[0]; data1[1] = img_data.im_shape_[1]; auto preprocess_end = std::chrono::steady_clock::now(); // 2. Run predictor // warm up for (int i = 0; i < repeats / 2; i++) { predictor->Run(); } auto inference_start = std::chrono::steady_clock::now(); for (int i = 0; i < repeats; i++) { predictor->Run(); } auto inference_end = std::chrono::steady_clock::now(); // 3. Get output and post process auto postprocess_start = std::chrono::steady_clock::now(); std::unique_ptr output_tensor( std::move(predictor->GetOutput(0))); const float* outptr = output_tensor->data(); auto shape_out = output_tensor->shape(); int64_t cnt = 1; for (auto& i : shape_out) { cnt *= i; } auto rec_out = visualize_result( outptr, static_cast(cnt / 6), 0.5f, img, class_names); std::string result_name = img_path.substr(0, img_path.find(".")) + "_result.jpg"; cv::imwrite(result_name, img); auto postprocess_end = std::chrono::steady_clock::now(); std::chrono::duration prep_diff = preprocess_end - preprocess_start; times->push_back(double(prep_diff.count() * 1000)); std::chrono::duration infer_diff = inference_end - inference_start; times->push_back(double(infer_diff.count() / repeats * 1000)); std::chrono::duration post_diff = postprocess_end - postprocess_start; times->push_back(double(post_diff.count() * 1000)); } int main(int argc, char** argv) { if (argc < 3) { std::cerr << "[ERROR] usage: " << argv[0] << " config_path image_path\n"; exit(1); } std::string config_path = argv[1]; std::string img_path = argv[2]; // load config auto config = LoadConfigTxt(config_path); PrintConfig(config); bool enable_benchmark = bool(stoi(config.at("enable_benchmark"))); int repeats = enable_benchmark ? 50 : 1; std::vector det_times; RunModel(config, img_path, repeats, &det_times); PrintBenchmarkLog(det_times, config, 1); return 0; }