12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import numpy as np
- import cv2
- import torch
- import ot
- from basic_ops import Line
- from chamfer_distance import ChamferDistance
- cd = ChamferDistance()
- def sa_metric(angle_p, angle_g):
- d_angle = np.abs(angle_p - angle_g)
- d_angle = min(d_angle, np.pi - d_angle)
- d_angle = d_angle * 2 / np.pi
- return max(0, (1 - d_angle)) ** 2
- def se_metric(coord_p, coord_g, size=(400, 400)):
- c_p = [(coord_p[0] + coord_p[2]) / 2, (coord_p[1] + coord_p[3]) / 2]
- c_g = [(coord_g[0] + coord_g[2]) / 2, (coord_g[1] + coord_g[3]) / 2]
- d_coord = np.abs(c_p[0] - c_g[0])**2 + np.abs(c_p[1] - c_g[1])**2
- d_coord = np.sqrt(d_coord) / max(size[0], size[1])
- return max(0, (1 - d_coord)) ** 2
- def EA_metric(l_pred, l_gt, size=(400, 400)):
- se = se_metric(l_pred.coord, l_gt.coord, size=size)
- sa = sa_metric(l_pred.angle(), l_gt.angle())
- return sa * se
- def Chamfer_metric(l_pred, l_gt, size=(400, 400)):
- points1 = get_points_coords(l_pred)
- points2 = get_points_coords(l_gt)
- #add z-axis
- points1 = np.insert(points1, 0, values=0, axis=1)
- points2 = np.insert(points2, 0, values=0, axis=1)
-
- p1 = torch.from_numpy(points1).unsqueeze(0).float()
- p2 = torch.from_numpy(points2).unsqueeze(0).float()
- d1, d2 = cd(p1, p2)
-
- d = (d1.mean().item() + d2.mean().item()) / 2
- mmax = size[0] * size[0] + size[1] * size[1]
-
- return 1 - d / mmax
- def Emd_metric(l_pred, l_gt, size=(400, 400)):
- points1 = get_points_coords(l_pred)
- points2 = get_points_coords(l_gt)
- M = ot.dist(points1, points2, metric='euclidean')
- _, log = ot.emd([], [], M, log=True)
- cost = log['cost']
- return 1 - cost / np.sqrt(size[0] * size[0] + size[1] * size[1])
- def get_points_coords(l):
- points = []
- y0, x0, y1, x1 = l.coord
- dx = x1 - x0
- dy = y1 - y0
- length = int(np.sqrt(dx * dx + dy * dy))
- for _ in range(length + 1):
- points.append([int(np.round(x0)), int(np.round(y0))])
- x0 += (dx / length)
- y0 += (dy / length)
- return points
-
- if __name__ == "__main__":
- # l1 = Line([0, 200, 400, 200])
- # l2 = Line([200, 0, 200, 400])
- l1 = Line([200, 0, 190, 399])
- l2 = Line([190, 0, 200, 399])
- print(EA_metric(l1, l2))
- mask = np.zeros((400, 400))
- cv2.line(mask, (5, 0), (0, 5), 255, 1)
- cv2.line(mask, (394, 399), (399, 394), 255, 1)
- cv2.imwrite('debug.png', mask)
- cd_score = Chamfer_metric(l1, l2)
- emd_score = Emd_metric(l1, l2)
- print(cd_score, emd_score)
-
|