import math import torch.nn as nn import torch.utils.model_zoo as model_zoo def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None, groups=1, base_width=64): super(BasicBlock, self).__init__() if BatchNorm is None: BatchNorm = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = BatchNorm(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None, groups=1, base_width=64): super(Bottleneck, self).__init__() width = int(planes * (base_width / 64.)) * groups self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False) self.bn1 = BatchNorm(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False, groups=groups) self.bn2 = BatchNorm(width) self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, arch, block, layers, output_stride, BatchNorm, pretrained=True): self.inplanes = 64 self.layers = layers self.arch = arch super(ResNet, self).__init__() blocks = [1, 2, 4] if output_stride == 16: strides = [1, 2, 2, 1] dilations = [1, 1, 1, 2] elif output_stride == 8: strides = [1, 2, 1, 1] dilations = [1, 1, 2, 4] else: strides = [1, 2, 2, 2] dilations = [1, 1, 1, 1] if arch == 'resnext50': self.base_width = 4 self.groups = 32 else: self.base_width = 64 self.groups = 1 # Modules self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm) if self.arch == 'resnet18': self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) else: self.layer4 = self._make_MG_unit(block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) if self.arch == 'resnet18': self.toplayer = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0) self.latlayer1 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d( 128, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d( 64, 256, kernel_size=1, stride=1, padding=0) else: self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0) self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self._init_weight() if pretrained: self._load_pretrained_model() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, dilation, downsample, BatchNorm, groups=self.groups, base_width=self.base_width)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm, groups=self.groups, base_width=self.base_width)) return nn.Sequential(*layers) def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, dilation=blocks[0]*dilation, downsample=downsample, BatchNorm=BatchNorm, groups=self.groups, base_width=self.base_width)) self.inplanes = planes * block.expansion for i in range(1, len(blocks)): layers.append(block(self.inplanes, planes, stride=1, dilation=blocks[i]*dilation, BatchNorm=BatchNorm, groups=self.groups, base_width=self.base_width)) return nn.Sequential(*layers) def forward(self, input): # Bottom-up x = self.conv1(input) x = self.bn1(x) x = self.relu(x) c1 = self.maxpool(x) c2 = self.layer1(c1) # x4 c3 = self.layer2(c2) #x8 c4 = self.layer3(c3) #x16 c5 = self.layer4(c4) #x16 # Top-down p5 = self.toplayer(c5) p4 = nn.functional.upsample(p5, size=c4.size()[2:], mode='bilinear') + self.latlayer1(c4) p3 = nn.functional.upsample(p4, size=c3.size()[2:], mode='bilinear') + self.latlayer2(c3) p2 = nn.functional.upsample(p3, size=c2.size()[2:], mode='bilinear') + self.latlayer3(c2) p4 = self.smooth1(p4) p3 = self.smooth2(p3) p2 = self.smooth3(p2) return p2, p3, p4, p5 def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _load_pretrained_model(self): if self.arch == 'resnet101': pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth') elif self.arch == 'resnet50': pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth') elif self.arch == 'resnet18': pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth') elif self.arch == 'resnext50': pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth') model_dict = {} state_dict = self.state_dict() for k, v in pretrain_dict.items(): if k in state_dict: model_dict[k] = v state_dict.update(model_dict) self.load_state_dict(state_dict) def FPN101(output_stride, BatchNorm=nn.BatchNorm2d, pretrained=True): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet('resnet101', Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, pretrained=pretrained) return model def FPN50(output_stride, BatchNorm=nn.BatchNorm2d, pretrained=True): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet('resnet50', Bottleneck, [3, 4, 6, 3], output_stride, BatchNorm, pretrained=pretrained) return model def FPN18(output_stride, BatchNorm=nn.BatchNorm2d, pretrained=True): model = ResNet('resnet18', BasicBlock, [2, 2, 2, 2], output_stride, BatchNorm, pretrained=pretrained) return model def ResNext50_FPN(output_stride, BatchNorm=nn.BatchNorm2d, pretrained=True): model = ResNet('resnext50', Bottleneck, [3, 4, 6, 3], output_stride, BatchNorm, pretrained=pretrained) return model if __name__ == "__main__": import torch model = FPN101(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=8) input = torch.rand(1, 3, 480, 640) output = model(input) for out in output: print(out.size()) # print(low_level_feat.size())