123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- # --------------------------------------------------------
- # Swin Transformer
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ze Liu
- # --------------------------------------------------------
- import os
- import torch
- import torch.distributed as dist
- def split_moe_model_state_dict(moe_keys, model_state_dict):
- moe_model_state_dict = {}
- non_moe_model_state_dict = {}
- for (k, v) in model_state_dict.items():
- if k in moe_keys:
- moe_model_state_dict[k] = v
- else:
- non_moe_model_state_dict[k] = v
- return moe_model_state_dict, non_moe_model_state_dict
- def merge_moe_model_state_dict(moe_model_state_dict, non_moe_model_state_dict):
- model_state_dict = {}
- model_state_dict.update(moe_model_state_dict)
- model_state_dict.update(non_moe_model_state_dict)
- return model_state_dict
- def load_checkpoint(config, model, optimizer, lr_scheduler, loss_scaler, logger):
- global_rank = dist.get_rank()
- logger.info(f"==============> Rank[{global_rank}] Resuming form {config.MODEL.RESUME}....................")
- if config.MODEL.RESUME.endswith(f'.pth'):
- if config.TRAIN.MOE.SAVE_MASTER:
- resume_path = config.MODEL.RESUME + f'.global'
- else:
- resume_path = config.MODEL.RESUME + f'.rank{global_rank}'
- logger.info(f"===> Rank[{global_rank}] Re-formatting checkpoint name to {resume_path}......")
- else:
- resume_path = config.MODEL.RESUME
- checkpoint = torch.load(resume_path, map_location='cpu')
- msg = model.load_state_dict(checkpoint['model'], strict=False)
- logger.info(msg)
- max_accuracy = 0.0
- if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
- optimizer.load_state_dict(checkpoint['optimizer'])
- lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
- config.defrost()
- config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
- config.freeze()
- if 'scaler' in checkpoint:
- loss_scaler.load_state_dict(checkpoint['scaler'])
- logger.info(f"=>Rank[{global_rank}] loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
- if 'max_accuracy' in checkpoint:
- max_accuracy = checkpoint['max_accuracy']
- del checkpoint
- torch.cuda.empty_cache()
- return max_accuracy
- def load_pretrained(config, model, logger):
- global_rank = dist.get_rank()
- logger.info(f"==============> Rank[{global_rank}] Loading weight {config.MODEL.PRETRAINED} for fine-tuning......")
- if config.MODEL.PRETRAINED.endswith(f'.pth'):
- if config.TRAIN.MOE.SAVE_MASTER:
- pretrained_path = config.MODEL.PRETRAINED + f'.global'
- else:
- pretrained_path = config.MODEL.PRETRAINED + f'.rank{global_rank}'
- logger.info(f"===> Rank[{global_rank}] Re-formatting checkpoint name to {pretrained_path}......")
- else:
- pretrained_path = config.MODEL.PRETRAINED
- if pretrained_path.endswith(f'.rank{global_rank}'):
- checkpoint = torch.load(pretrained_path, map_location='cpu')
- if os.path.exists(pretrained_path.replace(f'.rank{global_rank}', f'.master')):
- checkpoint_master = torch.load(pretrained_path.replace(f'.rank{global_rank}', f'.master'),
- map_location='cpu')
- state_dict = merge_moe_model_state_dict(checkpoint['model'], checkpoint_master['model'])
- else:
- state_dict = checkpoint['model']
- elif pretrained_path.endswith(f'.pth.global'):
- checkpoint = torch.load(pretrained_path, map_location='cpu')
- state_dict = checkpoint['model']
- else:
- raise NotImplementedError(f"{config.MODEL.PRETRAINED} file error...")
- # delete relative_position_index since we always re-init it
- relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k]
- for k in relative_position_index_keys:
- del state_dict[k]
- # delete relative_coords_table since we always re-init it
- relative_position_index_keys = [k for k in state_dict.keys() if "relative_coords_table" in k]
- for k in relative_position_index_keys:
- del state_dict[k]
- # delete attn_mask since we always re-init it
- attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
- for k in attn_mask_keys:
- del state_dict[k]
- # bicubic interpolate relative_position_bias_table if not match
- relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
- for k in relative_position_bias_table_keys:
- relative_position_bias_table_pretrained = state_dict[k]
- relative_position_bias_table_current = model.state_dict()[k]
- L1, nH1 = relative_position_bias_table_pretrained.size()
- L2, nH2 = relative_position_bias_table_current.size()
- if nH1 != nH2:
- logger.warning(f"Error in loading {k}, passing......")
- else:
- if L1 != L2:
- # bicubic interpolate relative_position_bias_table if not match
- S1 = int(L1 ** 0.5)
- S2 = int(L2 ** 0.5)
- relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
- relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2),
- mode='bicubic')
- state_dict[k] = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
- # bicubic interpolate absolute_pos_embed if not match
- absolute_pos_embed_keys = [k for k in state_dict.keys() if "absolute_pos_embed" in k]
- for k in absolute_pos_embed_keys:
- # dpe
- absolute_pos_embed_pretrained = state_dict[k]
- absolute_pos_embed_current = model.state_dict()[k]
- _, L1, C1 = absolute_pos_embed_pretrained.size()
- _, L2, C2 = absolute_pos_embed_current.size()
- if C1 != C1:
- logger.warning(f"Error in loading {k}, passing......")
- else:
- if L1 != L2:
- S1 = int(L1 ** 0.5)
- S2 = int(L2 ** 0.5)
- absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
- absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
- absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
- absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
- absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1)
- absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.flatten(1, 2)
- state_dict[k] = absolute_pos_embed_pretrained_resized
- # check classifier, if not match, then re-init classifier to zero
- head_bias_pretrained = state_dict['head.bias']
- Nc1 = head_bias_pretrained.shape[0]
- Nc2 = model.head.bias.shape[0]
- if (Nc1 != Nc2):
- if Nc1 == 21841 and Nc2 == 1000:
- logger.info("loading ImageNet-22K weight to ImageNet-1K ......")
- map22kto1k_path = f'data/map22kto1k.txt'
- with open(map22kto1k_path) as f:
- map22kto1k = f.readlines()
- map22kto1k = [int(id22k.strip()) for id22k in map22kto1k]
- state_dict['head.weight'] = state_dict['head.weight'][map22kto1k, :]
- state_dict['head.bias'] = state_dict['head.bias'][map22kto1k]
- else:
- torch.nn.init.constant_(model.head.bias, 0.)
- torch.nn.init.constant_(model.head.weight, 0.)
- del state_dict['head.weight']
- del state_dict['head.bias']
- logger.warning(f"Error in loading classifier head, re-init classifier head to 0")
- msg = model.load_state_dict(state_dict, strict=False)
- logger.warning(msg)
- logger.info(f"=> loaded successfully '{config.MODEL.PRETRAINED}'")
- del checkpoint
- torch.cuda.empty_cache()
- def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger,
- zero_redundancy=False):
- global_rank = dist.get_rank()
- if zero_redundancy:
- if config.TRAIN.MOE.SAVE_MASTER:
- save_state = {'model': model.state_dict()}
- if global_rank == 0:
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth.global')
- logger.info(f"{save_path} saving......")
- torch.save(save_state, save_path)
- logger.info(f"{save_path} saved !!!")
- else:
- moe_model_state_dict, non_moe_model_state_dict = \
- split_moe_model_state_dict(model._ddp_params_and_buffers_to_ignore, model.state_dict())
- save_state = {'model': moe_model_state_dict}
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth.rank{global_rank}')
- logger.info(f"{save_path} saving......")
- torch.save(save_state, save_path)
- logger.info(f"{save_path} saved !!!")
- if global_rank == 0:
- save_state_master = {'model': non_moe_model_state_dict}
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth.master')
- logger.info(f"{save_path} saving......")
- torch.save(save_state_master, save_path)
- logger.info(f"{save_path} saved !!!")
- else:
- save_state = {'model': model.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'lr_scheduler': lr_scheduler.state_dict(),
- 'max_accuracy': max_accuracy,
- 'scaler': loss_scaler.state_dict(),
- 'epoch': epoch,
- 'config': config}
- if config.TRAIN.MOE.SAVE_MASTER:
- if global_rank == 0:
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth.global')
- logger.info(f"{save_path} saving......")
- torch.save(save_state, save_path)
- logger.info(f"{save_path} saved !!!")
- else:
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth.rank{global_rank}')
- logger.info(f"{save_path} saving......")
- torch.save(save_state, save_path)
- logger.info(f"{save_path} saved !!!")
- def auto_resume_helper(output_dir, save_master=False):
- global_rank = dist.get_rank()
- checkpoints = os.listdir(output_dir)
- if not save_master:
- master_checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith(f'pth.rank0')]
- else:
- master_checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith(f'pth.global')]
- print(f"All master checkpoints founded in {output_dir}: {master_checkpoints}")
- if len(master_checkpoints) > 0:
- latest_master_checkpoint = max([os.path.join(output_dir, d) for d in master_checkpoints], key=os.path.getmtime)
- latest_checkpoint = latest_master_checkpoint.replace('pth.rank0', f'pth.rank{global_rank}')
- print(f"The latest checkpoint founded: {latest_checkpoint}")
- resume_file = latest_checkpoint
- else:
- resume_file = None
- return resume_file
- def hook_scale_grad(scale, tensor):
- return tensor / scale
|