123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- # --------------------------------------------------------
- # Swin Transformer
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ze Liu
- # --------------------------------------------------------
- import os
- import torch
- import torch.distributed as dist
- try:
- from torch._six import inf
- except:
- from torch import inf
- def load_checkpoint(config, model, optimizer, lr_scheduler, loss_scaler, logger):
- logger.info(f"==============> Resuming form {config.MODEL.RESUME}....................")
- if config.MODEL.RESUME.startswith('https'):
- checkpoint = torch.hub.load_state_dict_from_url(
- config.MODEL.RESUME, map_location='cpu', check_hash=True)
- else:
- checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
-
- # checkpoint['model'].pop('head.weight')
- # checkpoint['model'].pop('head.bias')
-
- for k,v in checkpoint['model'].items():
- print('=====',k,'======',v.shape)
- if checkpoint['model']['head.weight'].shape[0]==1000:
- checkpoint['model']['head.weight']=torch.nn.Parameter(torch.nn.init.xavier_uniform(torch.empty(2,768)))
- checkpoint['model']['head.bias']=torch.nn.Parameter(torch.randn(2))
- print('===modify head weight and bias===')
- msg = model.load_state_dict(checkpoint['model'], strict=False)
- logger.info(msg)
- max_accuracy = 0.0
- if not config.EVAL_MODE and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
- optimizer.load_state_dict(checkpoint['optimizer'])
- lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
- config.defrost()
- config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
- config.freeze()
- if 'scaler' in checkpoint:
- loss_scaler.load_state_dict(checkpoint['scaler'])
- logger.info(f"=> loaded successfully '{config.MODEL.RESUME}' (epoch {checkpoint['epoch']})")
- if 'max_accuracy' in checkpoint:
- max_accuracy = checkpoint['max_accuracy']
- del checkpoint
- torch.cuda.empty_cache()
- return max_accuracy
- def load_pretrained(config, model, logger):
- logger.info(f"==============> Loading weight {config.MODEL.PRETRAINED} for fine-tuning......")
- checkpoint = torch.load(config.MODEL.PRETRAINED, map_location='cpu')
- state_dict = checkpoint['model']
- # delete relative_position_index since we always re-init it
- relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k]
- for k in relative_position_index_keys:
- del state_dict[k]
- # delete relative_coords_table since we always re-init it
- relative_position_index_keys = [k for k in state_dict.keys() if "relative_coords_table" in k]
- for k in relative_position_index_keys:
- del state_dict[k]
- # delete attn_mask since we always re-init it
- attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
- for k in attn_mask_keys:
- del state_dict[k]
- # bicubic interpolate relative_position_bias_table if not match
- relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
- for k in relative_position_bias_table_keys:
- relative_position_bias_table_pretrained = state_dict[k]
- relative_position_bias_table_current = model.state_dict()[k]
- L1, nH1 = relative_position_bias_table_pretrained.size()
- L2, nH2 = relative_position_bias_table_current.size()
- if nH1 != nH2:
- logger.warning(f"Error in loading {k}, passing......")
- else:
- if L1 != L2:
- # bicubic interpolate relative_position_bias_table if not match
- S1 = int(L1 ** 0.5)
- S2 = int(L2 ** 0.5)
- relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
- relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2),
- mode='bicubic')
- state_dict[k] = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
- # bicubic interpolate absolute_pos_embed if not match
- absolute_pos_embed_keys = [k for k in state_dict.keys() if "absolute_pos_embed" in k]
- for k in absolute_pos_embed_keys:
- # dpe
- absolute_pos_embed_pretrained = state_dict[k]
- absolute_pos_embed_current = model.state_dict()[k]
- _, L1, C1 = absolute_pos_embed_pretrained.size()
- _, L2, C2 = absolute_pos_embed_current.size()
- if C1 != C1:
- logger.warning(f"Error in loading {k}, passing......")
- else:
- if L1 != L2:
- S1 = int(L1 ** 0.5)
- S2 = int(L2 ** 0.5)
- absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
- absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
- absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
- absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
- absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1)
- absolute_pos_embed_pretrained_resized = absolute_pos_embed_pretrained_resized.flatten(1, 2)
- state_dict[k] = absolute_pos_embed_pretrained_resized
- # check classifier, if not match, then re-init classifier to zero
- head_bias_pretrained = state_dict['head.bias']
- Nc1 = head_bias_pretrained.shape[0]
- Nc2 = model.head.bias.shape[0]
- if (Nc1 != Nc2):
- if Nc1 == 21841 and Nc2 == 1000:
- logger.info("loading ImageNet-22K weight to ImageNet-1K ......")
- map22kto1k_path = f'data/map22kto1k.txt'
- with open(map22kto1k_path) as f:
- map22kto1k = f.readlines()
- map22kto1k = [int(id22k.strip()) for id22k in map22kto1k]
- state_dict['head.weight'] = state_dict['head.weight'][map22kto1k, :]
- state_dict['head.bias'] = state_dict['head.bias'][map22kto1k]
- else:
- torch.nn.init.constant_(model.head.bias, 0.)
- torch.nn.init.constant_(model.head.weight, 0.)
- del state_dict['head.weight']
- del state_dict['head.bias']
- logger.warning(f"Error in loading classifier head, re-init classifier head to 0")
- msg = model.load_state_dict(state_dict, strict=False)
- logger.warning(msg)
- logger.info(f"=> loaded successfully '{config.MODEL.PRETRAINED}'")
- del checkpoint
- torch.cuda.empty_cache()
- def save_checkpoint(config, epoch, model, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger):
- save_state = {'model': model.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'lr_scheduler': lr_scheduler.state_dict(),
- 'max_accuracy': max_accuracy,
- 'scaler': loss_scaler.state_dict(),
- 'epoch': epoch,
- 'config': config}
- save_path = os.path.join(config.OUTPUT, f'ckpt_epoch_{epoch}.pth')
- logger.info(f"{save_path} saving......")
- torch.save(save_state, save_path)
- logger.info(f"{save_path} saved !!!")
- def get_grad_norm(parameters, norm_type=2):
- if isinstance(parameters, torch.Tensor):
- parameters = [parameters]
- parameters = list(filter(lambda p: p.grad is not None, parameters))
- norm_type = float(norm_type)
- total_norm = 0
- for p in parameters:
- param_norm = p.grad.data.norm(norm_type)
- total_norm += param_norm.item() ** norm_type
- total_norm = total_norm ** (1. / norm_type)
- return total_norm
- def auto_resume_helper(output_dir):
- checkpoints = os.listdir(output_dir)
- checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
- print(f"All checkpoints founded in {output_dir}: {checkpoints}")
- if len(checkpoints) > 0:
- latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
- print(f"The latest checkpoint founded: {latest_checkpoint}")
- resume_file = latest_checkpoint
- else:
- resume_file = None
- return resume_file
- def reduce_tensor(tensor):
- rt = tensor.clone()
- dist.all_reduce(rt, op=dist.ReduceOp.SUM)
- rt /= dist.get_world_size()
- return rt
- def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
- if isinstance(parameters, torch.Tensor):
- parameters = [parameters]
- parameters = [p for p in parameters if p.grad is not None]
- norm_type = float(norm_type)
- if len(parameters) == 0:
- return torch.tensor(0.)
- device = parameters[0].grad.device
- if norm_type == inf:
- total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
- else:
- total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
- norm_type).to(device) for p in parameters]), norm_type)
- return total_norm
- class NativeScalerWithGradNormCount:
- state_dict_key = "amp_scaler"
- def __init__(self):
- self._scaler = torch.cuda.amp.GradScaler()
- def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
- self._scaler.scale(loss).backward(create_graph=create_graph)
- if update_grad:
- if clip_grad is not None:
- assert parameters is not None
- self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
- norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
- else:
- self._scaler.unscale_(optimizer)
- norm = ampscaler_get_grad_norm(parameters)
- self._scaler.step(optimizer)
- self._scaler.update()
- else:
- norm = None
- return norm
- def state_dict(self):
- return self._scaler.state_dict()
- def load_state_dict(self, state_dict):
- self._scaler.load_state_dict(state_dict)
|